This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Predicting Ignition Quality of Oxygenated Fuels Using Artificial Neural Networks

Journal Article
04-14-02-0005
ISSN: 1946-3952, e-ISSN: 1946-3960
Published May 05, 2021 by SAE International in United States
Predicting Ignition Quality of Oxygenated Fuels Using Artificial Neural Networks
Sector:
Citation: Abdul Jameel, A., van Oudenhoven, V., Naser, N., Emwas, A. et al., "Predicting Ignition Quality of Oxygenated Fuels Using Artificial Neural Networks," SAE Int. J. Fuels Lubr. 14(2):57-85, 2021, https://doi.org/10.4271/04-14-02-0005.
Language: English

References

  1. Khalafalla , S.S. , Zahid , U. , Jameel , A.G.A. et al. Conceptual Design Development of Coal-To-Methanol Process with Carbon Capture and Utilization Energies 13 23 2020 6421 10.3390/en13236421
  2. Reitz , R.D. , Ogawa , H. , Payri , R. , Fansler , T. et al. IJER Editorial: The Future of the Internal Combustion Engine Int. J. Engine Res. 21 1 2020 3 10 10.1177/1468087419877990
  3. Kalghatgi , G. Is It Really the End of Internal Combustion Engines and Petroleum in Transport? Appl. Energy 225 February 2018 965 974 10.1016/j.apenergy.2018.05.076
  4. Kalghatgi , G. Development of Fuel/Engine Systems—The Way Forward to Sustainable Transport Engineering 5 3 2019 510 518 10.1016/j.eng.2019.01.009
  5. Singh , E. , Badra , J. , Mehl , M. , and Sarathy , S.M. Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures Energy & Fuels 31 2 2017 1945 1960 10.1021/acs.energyfuels.6b02659
  6. 2015 10.1520/D0613
  7. 2013
  8. Perez , P.L. , and Boehman , A.L. Experimental Investigation of the Autoignition Behavior of Surrogate Gasoline Fuels in a Constant-Volume Combustion Bomb Apparatus and Its Relevance to HCCI Combustion Energy & Fuels 26 10 2012 6106 6117 10.1021/ef300503b
  9. Yanowitz , J. , Ratcliff , M.A. , McCormick , R.L. , Taylor , J.D. et al. Compendium of Experimental Cetane Numbers Golden, CO National Renewable Energy Laboratory 2017 10.2172/1345058
  10. Naser , N. , Sarathy , S.M. , and Chung , S.H. Ignition Delay Time Sensitivity in Ignition Quality Tester (IQT) and Its Relation to Octane Sensitivity Fuel 233 January 2018 412 419 10.1016/j.fuel.2018.05.131
  11. Naser , N. , Yang , S.Y. , Kalghatgi , G. , and Chung , S.H. Relating the Octane Numbers of Fuels to Ignition Delay Times Measured in an Ignition Quality Tester (IQT) Fuel 187 2017 117 127 10.1016/j.fuel.2016.09.013
  12. Won , S.H. , Rock , N. , Lim , S.J. , Nates , S. et al. Preferential Vaporization Impacts on Lean Blow-Out of Liquid Fueled Combustors Combust. Flame 205 2019 295 304 10.1016/j.combustflame.2019.04.008
  13. Liu , H. , Wang , Z. , Li , Y. , Zheng , Y. et al. Recent Progress in the Application in Compression Ignition Engines and the Synthesis Technologies of Polyoxymethylene Dimethyl Ethers Appl. Energy 233-234 June 2018 2019 599 611 10.1016/j.apenergy.2018.10.064
  14. Li , B. , Li , Y. , Liu , H. , Liu , F. et al. Combustion and Emission Characteristics of Diesel Engine Fueled with Biodiesel/PODE Blends Appl. Energy 206 2017 425 431 10.1016/j.apenergy.2017.08.206
  15. Liu , H. , Wang , Z. , Zhang , J. , Wang , J. et al. Study on Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers/Diesel Blends in Light-Duty and Heavy-Duty Diesel Engines Appl. Energy 185 2017 1393 1402 10.1016/j.apenergy.2015.10.183
  16. Liu , J. , Sun , P. , Huang , H. , Meng , J. et al. Experimental Investigation on Performance, Combustion and Emission Characteristics of a Common-Rail Diesel Engine Fueled with Polyoxymethylene Dimethyl Ethers-Diesel Blends Appl. Energy 202 2017 527 536 10.1016/j.apenergy.2017.05.166
  17. Kessler , T. , Sacia , E.R. , Bell , A.T. , and Mack , J.H. Artificial Neural Network Based Predictions of Cetane Number for Furanic Biofuel Additives Fuel 206 2017 171 179 10.1016/j.fuel.2017.06.015
  18. Herreros , J.M. , Jones , A. , Sukjit , E. , and Tsolakis , A. Blending Lignin-Derived Oxygenate in Enhanced Multi-Component Diesel Fuel for Improved Emissions Appl. Energy 116 2014 58 65 10.1016/j.apenergy.2013.11.022
  19. Vallinayagam , R. , Vedharaj , S. , Yang , W.M. , Raghavan , V. et al. Investigation of Evaporation and Engine Characteristics of Pine Oil Biofuel Fumigated in the Inlet Manifold of a Diesel Engine Appl. Energy 115 2014 514 524 https://doi.org/10.1016/j.apenergy.2013.11.004
  20. Pepiotdesjardins , P. , Pitsch , H. , Malhotra , R. , Kirby , S. et al. Structural Group Analysis for Soot Reduction Tendency of Oxygenated Fuels Combust. Flame 154 1-2 2008 191 205 10.1016/j.combustflame.2008.03.017
  21. Gao , Z. , Zou , X. , Huang , Z. , and Zhu , L. Predicting Sooting Tendencies of Oxygenated Hydrocarbon Fuels with Machine Learning Algorithms Fuel 242 2019 438 446 10.1016/J.FUEL.2019.01.064
  22. Das , D.D. , John , P.C.S. , McEnally , C.S. , Kim , S. et al. Measuring and Predicting Sooting Tendencies of Oxygenates, Alkanes, Alkenes, Cycloalkanes, and Aromatics on a Unified Scale Combust. Flame 190 2018 349 364 10.1016/J.COMBUSTFLAME.2017.12.005
  23. Barrientos , E.J. , Lapuerta , M. , and Boehman , A.L. Group Additivity in Soot Formation for the Example of C-5 Oxygenated Hydrocarbon Fuels Combust. Flame 160 8 2013 1484 1498 10.1016/j.combustflame.2013.02.024
  24. Abdul Jameel , A.G. , Alkhateeb , A. , Telalović , S. , Elbaz , A.M. et al. Environmental Challenges and Opportunities in Marine Engine Heavy Fuel Oil Combustion Proceedings of the Fourth International Conference in Ocean Engineering Singapore Springer 2019 1047 1055 10.1007/978-981-13-3119-0_72
  25. Sarathy , S.M. , Oßwald , P. , Hansen , N. , and Kohse-Höinghaus , K. Alcohol Combustion Chemistry Prog. Energy Combust. Sci. 44 2014 40 102 10.1016/j.pecs.2014.04.003
  26. Labeckas , G. , Slavinskas , S. , and Kanapkienė , I. The Individual Effects of Cetane Number, Oxygen Content or Fuel Properties on Performance Efficiency, Exhaust Smoke and Emissions of a Turbocharged CRDI Diesel Engine—Part 2 Energy Convers. Manag. 149 2017 442 466 https://doi.org/10.1016/j.enconman.2017.07.017
  27. Labeckas , G. , Slavinskas , S. , and Kanapkienė , I. The Individual Effects of Cetane Number, Oxygen Content or Fuel Properties on the Ignition Delay, Combustion Characteristics, and Cyclic Variation of a Turbocharged CRDI Diesel Engine—Part 1 Energy Convers. Manag. 148 2017 1003 1027 https://doi.org/10.1016/j.enconman.2017.06.050
  28. Zhou , X. , Qian , W. , Pan , M. , Huang , R. et al. Potential of n-Butanol/Diesel Blends for CI Engines under Post Injection Strategy and Different EGR Rates Conditions Energy Convers. Manag. 204 2020 112329 https://doi.org/10.1016/j.enconman.2019.112329
  29. Santhosh , K. , and Kumar , G.N. Impact of 1-Hexanol/Diesel Blends on Combustion, Performance and Emission Characteristics of CRDI CI Mini Truck Engine under the Influence of EGR Energy Convers. Manag. 217 2020 113003 https://doi.org/10.1016/j.enconman.2020.113003
  30. Nanthagopal , K. , Kishna , R.S. , Atabani , A.E. , Al-Muhtaseb , A.H. et al. A Compressive Review on the Effects of Alcohols and Nanoparticles as an Oxygenated Enhancer in Compression Ignition Engine Energy Convers. Manag. 203 2020 112244 https://doi.org/10.1016/j.enconman.2019.112244
  31. Battin-Leclerc , F. Detailed Chemical Kinetic Models for the Low-Temperature Combustion of Hydrocarbons with Application to Gasoline and Diesel Fuel Surrogates Prog. Energy Combust. Sci. 34 4 2008 440 498 10.1016/j.pecs.2007.10.002
  32. Mohebbi , M. , Reyhanian , M. , Hosseini , V. , Said , M.F.M. et al. The Effect of Diethyl Ether Addition on Performance and Emission of a Reactivity Controlled Compression Ignition Engine Fueled with Ethanol and Diesel Energy Convers. Manag. 174 2018 779 792 https://doi.org/10.1016/j.enconman.2018.08.091
  33. Channapattana , S.V. , Pawar , A.A. , and Kamble , P.G. Optimisation of Operating Parameters of DI-CI Engine Fueled with Second Generation Bio-Fuel and Development of ANN Based Prediction Model Appl. Energy 187 2017 84 95 10.1016/j.apenergy.2016.11.030
  34. Sennott , T. , Gotianun , C. , Serres , R. , Ziabasharhagh , M. et al. Artificial Neural Network for Predicting Cetane Number of Biofuel Candidates Based on Molecular Structure Volume 2: Fuels; Numerical Simulation; Engine Design, Lubrication, and Applications ASME Dearborn, Michigan, USA 2013 V002T02A009 10.1115/ICEF2013-19185
  35. Saldana , D.A. , Starck , L. , Mougin , P. , Rousseau , B. et al. Flash Point and Cetane Number Predictions for Fuel Compounds Using Quantitative Structure Property Relationship (QSPR) Methods Energy & Fuels 25 9 2011 3900 3908 10.1021/ef200795j
  36. Creton , B. , Dartiguelongue , C. , de Bruin , T. , and Toulhoat , H. Prediction of the Cetane Number of Diesel Compounds Using the Quantitative Structure Property Relationship Energy & Fuels 24 10 2010 5396 5403 10.1021/ef1008456
  37. Stratiev , D. , Marinov , I. , Dinkov , R. , Shishkova , I. et al. Opportunity to Improve Diesel-Fuel Cetane-Number Prediction from Easily Available Physical Properties and Application of the Least-Squares Method and Artificial Neural Networks Energy & Fuels 29 3 2015 1520 1533 10.1021/ef502638c
  38. Abdul Jameel , A.G. , Naser , N. , Emwas , A.-H. , Dooley , S. et al. Predicting Fuel Ignition Quality Using 1 H NMR Spectroscopy and Multiple Linear Regression Energy & Fuels 30 11 2016 9819 9835 10.1021/acs.energyfuels.6b01690
  39. Sánchez-Borroto , Y. , Piloto-Rodriguez , R. , Errasti , M. , Sierens , R. et al. Prediction of Cetane Number and Ignition Delay of Biodiesel Using Artificial Neural Networks Energy Procedia 57 2014 877 885 10.1016/j.egypro.2014.10.297
  40. Dahmen , M. , and Marquardt , W. A Novel Group Contribution Method for the Prediction of the Derived Cetane Number of Oxygenated Hydrocarbons Energy & Fuels 29 9 2015 5781 5801 10.1021/acs.energyfuels.5b01032
  41. Angikath , F. , Naser , N. , and Sarathy , S.M. Investigating the Effects of C3 and C4 Alcohol Blending on Ignition Quality of Gasoline Fuels Energy & Fuels 34 7 2020 8777 8787 10.1021/acs.energyfuels.0c00192
  42. Heck , S.M. , Pritchard , H.O. , and Griffiths , J.F. Cetane Number vs. Structure in Paraffin Hydrocarbons J. Chem. Soc. Faraday Trans. 94 12 1998 1725 1727 10.1039/a800861b
  43. Lapidus , A.L. , Smolenskii , E.A. , Bavykin , V.M. , Myshenkova , T.N. et al. Models for the Calculation and Prediction of the Octane and Cetane Numbers of Individual Hydrocarbons Pet. Chem. 48 4 2008 277 286 10.1134/S0965544108040051
  44. DeFries , T.H. , Kastrup , R.V. , and Indritz , D. Prediction of Cetane Number by Group Additivity and Carbon-13 Nuclear Magnetic Resonance Ind. Eng. Chem. Res. 26 2 1987 188 193 10.1021/ie00062a002
  45. Smolenskii , E.A. , Bavykin , V.M. , Ryzhov , A.N. , Slovokhotova , O.L. et al. Cetane Numbers of Hydrocarbons: Calculations Using Optimal Topological Indices Russ. Chem. Bull. 57 3 2008 461 467 10.1007/s11172-008-0073-0
  46. Nadai , D.V. , Simões , J.B. , Gatts , C.E.N. , and Miranda , P.C.M.L. Inference of the Biodiesel Cetane Number by Multivariate Techniques Fuel 105 x 2013 325 330 10.1016/j.fuel.2012.06.018
  47. Kubic , W.L. , Jenkins , R.W. , Moore , C.M. , Semelsberger , T.A. et al. Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds Ind. Eng. Chem. Res. 56 42 2017 12236 12245 10.1021/acs.iecr.7b02753
  48. Schweidtmann , A.M. , Rittig , J.G. , König , A. , Grohe , M. et al. Graph Neural Networks for Prediction of Fuel Ignition Quality Energy & Fuels 34 9 2020 11395 11407 10.1021/acs.energyfuels.0c01533
  49. Souza , C.R. , Silva , A.H. , Nagata , N. , Ribas , L.T. et al. Cetane Number Assessment in Diesel Fuel by 1 H or Hydrogen Nuclear Magnetic Resonance-Based Multivariate Calibration Energy & Fuels 28 8 2014 4958 4962
  50. Kapur , G.S. , Ecker , A. , and Meusinger , R. Establishing Quantitative Structure−Property Relationships (QSPR) of Diesel Samples by Proton-NMR & Multiple Linear Regression (MLR) Analysis Energy & Fuels 15 4 2001 943 948 10.1021/ef010021u
  51. Alves , J.C.L. , Henriques , C.B. , and Poppi , R.J. Determination of Diesel Quality Parameters Using Support Vector Regression and near Infrared Spectroscopy for an In-Line Blending Optimizer System Fuel 97 2012 710 717 10.1016/j.fuel.2012.03.016
  52. Pande , S.G. , and Hardy , D.R. Cetane Number Predictions of a Trial Index Based on Compositional Analysis Energy & Fuels 3 3 1989 308 312 10.1021/ef00015a008
  53. Alizadeh , G. , Frounchi , J. , Baradaran Nia , M. , Zarifi , M.H. et al. An FPGA implementation of an Artificial Neural Network for prediction of cetane number 2008 International Conference on Computer and Communication Engineering Piscataway, NJ IEEE 2008 605 608 10.1109/ICCCE.2008.4580675
  54. Gulder , O.L. , and Glavincevski , B. Prediction of Cetane Number of Diesel Fuels from Carbon Type Structural Composition Determined by Proton NMR Spectroscopy Ind. Eng. Chem. Prod. Res. Dev. 25 2 1986 153 156 10.1021/i300022a005
  55. Ghosh , P. , and Jaffe , S.B. Detailed Composition-Based Model for Predicting the Cetane Number of Diesel Fuels Ind. Eng. Chem. Res. 45 1 2006 346 351 10.1021/ie0508132
  56. Gülder , Ö.L. , Burton , G.F. , and Whyte , R.B. NRCC Cetane Index - 1: An Improved Cetane Number Predictor SAE Technical Paper 861519 1986 10.4271/861519
  57. Yang , H. , Ring , Z. , Briker , Y. , McLean , N. et al. Neural Network Prediction of Cetane Number and Density of Diesel Fuel from Its Chemical Composition Determined by LC and GC-MS Fuel 81 1 2002 65 74 10.1016/S0016-2361(01)00121-1
  58. Ladommatos , N. , and Goacher , J. Equations for Predicting the Cetane Number of Diesel Fuels from Their Physical Properties Fuel 74 7 1995 1083 1093 10.1016/0016-2361(95)00040-C
  59. Basu , B. , Kapur , G.S. , Sarpal , A.S. , and Meusinger , R. A Neural Network Approach to the Prediction of Cetane Number of Diesel Fuels Using Nuclear Magnetic Resonance (NMR) Spectroscopy Energy & Fuels 17 6 2003 1570 1575 10.1021/ef030083f
  60. O’Connor , C.T. , Forrester , R.D. , and Scurrell , M.S. Cetane Number Determination of Synthetic Diesel Fuels Fuel 71 11 1992 1323 1327 10.1016/0016-2361(92)90061-R
  61. Piloto-Rodríguez , R. , Sánchez-Borroto , Y. , Lapuerta , M. , Goyos-Pérez , L. et al. Prediction of the Cetane Number of Biodiesel Using Artificial Neural Networks and Multiple Linear Regression Energy Convers. Manag. 65 2013 255 261 10.1016/j.enconman.2012.07.023
  62. Yuan , H. , Yang , B. , and Yang , J. Predicting Properties of Biodiesel Fuels using Mixture Topological Index Journal of the American Oil Chemists' Society 86 4 2009 375 382 10.1007/s11746-009-1354-y
  63. Hosseinpour , S. , Aghbashlo , M. , Tabatabaei , M. , and Khalife , E. Exact Estimation of Biodiesel Cetane Number (CN) from Its Fatty Acid Methyl Esters (FAMEs) Profile Using Partial Least Square (PLS) Adapted by Artificial Neural Network (ANN) Energy Convers. Manag. 124 2016 389 398 https://doi.org/10.1016/j.enconman.2016.07.027
  64. Bolay , M. 1953
  65. Abdul Jameel , A.G. 2019 10.25781/KAUST-ZBB21
  66. Elbaz , A.M. , Gani , A. , Hourani , N. , Emwas , A.-H. et al. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil Energy & Fuels 29 12 2015 7825 7835 10.1021/acs.energyfuels.5b01739
  67. Abdul Jameel , A.G. , Van Oudenhoven , V. , Emwas , A.-H. , and Sarathy , S.M. Predicting Octane Number Using Nuclear Magnetic Resonance Spectroscopy and Artificial Neural Networks Energy & Fuels 32 5 2018 6309 6329 10.1021/acs.energyfuels.8b00556
  68. Lapuerta , M. , Hernández , J.J. , and Sarathy , S.M. Effects of Methyl Substitution on the Auto-Ignition of C16 Alkanes Combust. Flame 164 2016 259 269 10.1016/j.combustflame.2015.11.024
  69. Naser , N. , Abdul Jameel , A.G. , Emwas , A.-H. , Singh , E. et al. The Influence of Chemical Composition on Ignition Delay Times of Gasoline Fractions Combust. Flame 209 2019 418 429 10.1016/J.COMBUSTFLAME.2019.07.030
  70. Abdul Jameel , A.G. , Naser , N. , Issayev , G. , Touitou , J. et al. A Minimalist Functional Group (MFG) Approach for Surrogate Fuel Formulation Combust. Flame 192 2018 250 271 10.1016/j.combustflame.2018.01.036
  71. Gani , A. , Jameel , A. , Naser , N. , Emwas , A. et al. Surrogate Formulation for Diesel and Jet Fuels Using the Minimalist Functional Group (MFG) Approach Proc. Combust. Inst. 37 4 2019 4663 4671 10.1016/j.proci.2018.09.035
  72. Mueller , C.J. , Cannella , W.J. , Bruno , T.J. , Bunting , B. et al. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics Energy & Fuels 26 6 2012 3284 3303 10.1021/ef300303e
  73. Mueller , C.J. , Cannella , W.J. , Bays , J.T. , Bruno , T.J. et al. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties Energy & Fuels 30 2 2016 1445 1461 10.1021/acs.energyfuels.5b02879
  74. Dragoş Ilieş , B. , Khandavilli , M. , Li , Y. , Kukkadapu , G. et al. Probing the Chemical Kinetics of Minimalist Functional Group Gasoline Surrogates Energy & Fuels 35 4 2021 3315 3332 10.1021/acs.energyfuels.0c02815
  75. Yu , J. , Ju , Y. , and Gou , X. Surrogate Fuel Formulation for Oxygenated and Hydrocarbon Fuels by Using the Molecular Structures and Functional Groups Fuel 166 2016 211 218 10.1016/j.fuel.2015.10.085
  76. Mehl , M. , Pitz , W.J. , Sarathy , S.M. , and Westbrook , C.K. Modeling the Combustion of High Molecular Weight Fuels by a Functional Group Approach Int. J. Chem. Kinet. 44 4 2012 257 276 10.1002/kin.20715
  77. Won , S.H. , Dooley , S. , Veloo , P.S. , Wang , H. et al. The Combustion Properties of 2,6,10-Trimethyl Dodecane and a Chemical Functional Group Analysis Combust. Flame 161 3 2014 826 834 10.1016/j.combustflame.2013.08.010
  78. Sumathi , R. , Carstensen , H.-H. , and Green , W.H. Reaction Rate Prediction via Group Additivity Part 1: H Abstraction from Alkanes by H and CH3 J. Phys. Chem. A 105 28 2001 6910 6925 10.1021/jp010697q
  79. Abdul Jameel , A.G. , Han , Y. , Brignoli , O. , Telalović , S. et al. Heavy Fuel Oil Pyrolysis and Combustion: Kinetics and Evolved Gases Investigated by TGA-FTIR J. Anal. Appl. Pyrolysis 127 August 2017 183 195 10.1016/j.jaap.2017.08.008
  80. Abdul Jameel , A.G. , Alquaity , A.B.S. , Campuzano , F. , Emwas , A. et al. Surrogate Formulation and Molecular Characterization of Sulfur Species in Vacuum Residues Using APPI and ESI FT-ICR Mass Spectrometry Fuel 293 February 2021 120471 10.1016/j.fuel.2021.120471
  81. Abdul Jameel , A.G. and Sarathy , S.M. Prediction of RON and MON of Gasoline-Ethanol Using 1 H NMR Spectroscopy Proceedings of the European Combustion Meeting Dubrovnik, Croatia 2017
  82. Abdul Jameel , A.G. , Elbaz , A.M. , Emwas , A.-H. , Roberts , W.L. et al. Calculation of Average Molecular Parameters, Functional Groups, and a Surrogate Molecule for Heavy Fuel Oils Using 1H and 13C Nuclear Magnetic Resonance Spectroscopy Energy & Fuels 30 5 2016 3894 3905 10.1021/acs.energyfuels.6b00303
  83. Abdul Jameel , A.G. and Sarathy , S.M. Lube Products: Molecular Characterization of Base Oils Encyclopedia of Analytical Chemistry Chichester, UK John Wiley & Sons, Ltd 2018 1 14 10.1002/9780470027318.a1824.pub2
  84. Campuzano , F. , Abdul Jameel , A.G. , Zhang , W. , Emwas , A.-H. et al. Fuel and Chemical Properties of Waste Tire Pyrolysis Oil Derived from a Continuous Twin-Auger Reactor Energy & Fuels 34 10 2020 12688 12702 10.1021/acs.energyfuels.0c02271
  85. Campuzano , F. , Abdul Jameel , A.G. , Zhang , W. , Emwas , A. et al. On the Distillation of Waste Tire Pyrolysis Oil: A Structural Characterization of the Derived Fractions Fuel 290 August 2020 2021 120041 10.1016/j.fuel.2020.120041
  86. Abdul Jameel , A.G. , Khateeb , A. , Elbaz , A.M. , Emwas , A.-H. et al. Characterization of Deasphalted Heavy Fuel Oil Using APPI (+) FT-ICR Mass Spectrometry and NMR Spectroscopy Fuel 253 2019 950 963 10.1016/j.fuel.2019.05.061
  87. Pei , X. , Abdul Jameel , A.G. , Chen , C. , AlGhamdi , I.A. et al. Swirling Flame Combustion of Heavy Fuel Oil: Effect of Fuel Sulfur Content J. Energy Resour. Technol. 143 8 2021 1 16 10.1115/1.4048942
  88. Dahmen , M. , Hechinger , M. , Victoria Villeda , J. , and Marquardt , W. Towards Model-Based Identification of Biofuels for Compression Ignition Engines SAE Int. J. Fuels Lubr. 5 3 2012 990 1003 https://doi.org/10.4271/2012-01-1593
  89. Maylin , M.V. , Kirgina , M.V. , Sviridova , E.V. , Sakhnevitch , B.V. et al. Calculation of Gasoline Octane Numbers Taking into Account the Reaction Interaction of Blend Components Procedia Chem. 10 2014 477 484 10.1016/j.proche.2014.10.080
  90. AlRamadan , A.S. , Sarathy , S.M. , Khurshid , M. , and Badra , J. A Blending Rule for Octane Numbers of PRFs and TPRFs with Ethanol Fuel 180 March 2007 2016 175 186 10.1016/j.fuel.2016.04.032
  91. Morgan , N. , Smallbone , A. , Bhave , A. , Kraft , M. et al. Mapping Surrogate Gasoline Compositions into RON/MON Space Combust. Flame 157 6 2010 1122 1131 10.1016/j.combustflame.2010.02.003
  92. Foong , T.M. , Morganti , K.J. , Brear , M.J. , da Silva , G. et al. The Octane Numbers of Ethanol Blended with Gasoline and Its Surrogates Fuel 115 2014 727 739 10.1016/j.fuel.2013.07.105
  93. Kathrotia , T. , and Riedel , U. Predicting the Soot Emission Tendency of Real Fuels—A Relative Assessment Based on an Empirical Formula Fuel 261 2020 116482 10.1016/J.FUEL.2019.116482
  94. Andrae , J.C.G. Development of a Detailed Kinetic Model for Gasoline Surrogate Fuels Fuel 87 10-11 2008 2013 2022 10.1016/j.fuel.2007.09.010
  95. Badra , J. , AlRamadan , A.S. , and Sarathy , S.M. Optimization of the Octane Response of Gasoline/Ethanol Blends Appl. Energy 203 March 2007 2017 778 793 10.1016/j.apenergy.2017.06.084
  96. Yang , S.Y. , Naser , N. , Chung , S.H. , and Cha , J. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel, n-Heptane, and iso-Octane Fuels under Low Temperature Conditions SAE Int. J. Fuels Lubr. 8 3 2015 537 548 https://doi.org/10.4271/2015-01-9074
  97. Waqas , M. , Naser , N. , Sarathy , M. , Feijs , J. et al. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes SAE Technical Paper 2017-01-0726 2017 https://doi.org/10.4271/2017-01-0726
  98. Waqas , M. , Naser , N. , Sarathy , M. , Morganti , K. et al. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes SAE Int. J. Fuels Lubr. 9 3 2016 659 682 https://doi.org/10.4271/2016-01-2298
  99. Nicolle , A. , Naser , N. , Javed , T. , Rankovic , N. et al. Autoignition Characteristics of Ethers Blended with Low Cetane Distillates Energy & Fuels 33 7 2019 6775 6787 10.1021/acs.energyfuels.9b00571
  100. Blondel-Telouk , A. , Loiseleur , H. , Barreau , A. , Behar , E. et al. Determination of the Average Molecular Weight of Petroleum Cuts by Vapor Pressure Depression Fluid Phase Equilib. 110 1 1995 315 339 https://doi.org/10.1016/0378-3812(95)02760-C
  101. Sarowha , S.L.S. Determination of Molecular Weights of Petroleum Products Using Gel Permeation Chromatography Pet. Sci. Technol. 23 5-6 2005 573 578 10.1081/LFT-200032846
  102. Rao , V.K. , and Bardon , M.F. Estimating The Molecular Weight of Petroleum Fractions Ind. Eng. Chem. Process Des. Dev. 24 2 1985 498 500 10.1021/i200029a046
  103. Kang , D. , Kirby , S. , Agudelo , J. , Lapuerta , M. et al. Combined Impact of Branching and Unsaturation on the Autoignition of Binary Blends in a Motored Engine Energy & Fuels 28 11 2014 7203 7215 10.1021/ef501629p
  104. Sarathy , S.M. , Javed , T. , Karsenty , F. , Heufer , A. et al. A Comprehensive Combustion Chemistry Study of 2,5-Dimethylhexane Combust. Flame 161 6 2014 1444 1459 10.1016/j.combustflame.2013.12.010
  105. Santana , R.C. , Do , P.T. , Santikunaporn , M. , Alvarez , W.E. et al. Evaluation of Different Reaction Strategies for the Improvement of Cetane Number in Diesel Fuels Fuel 85 5-6 2006 643 656 10.1016/j.fuel.2005.08.028
  106. Sarathy , S.M. , Yeung , C. , Westbrook , C.K. , Pitz , W.J. et al. An Experimental and Kinetic Modeling Study of n-Octane and 2-Methylheptane in an Opposed-Flow Diffusion Flame Combust. Flame 158 7 2011 1277 1287 10.1016/j.combustflame.2010.11.008
  107. Srivastava , N. , Hinton , G. , Krizhevsky , A. , Sutskever , I. et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting J. Mach. Learn. Res. 15 2014 1929 1958
  108. Chollet , F. Xception: Deep Learning with Depthwise Separable Convolutions 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Los Alamitos, CA IEEE 2017 1800 1807 10.1109/CVPR.2017.195
  109. Abadi , M. , Agarwal , A. , Barham , P. , Brevdo , E. et al. 2016 https://arxiv.org/abs/1603.04467
  110. Kingma , D.P. and Ba , J. 2014 https://arxiv.org/abs/1412.6980
  111. He , K. , Zhang , X. , Ren , S. , and Sun , J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 IEEE International Conference on Computer Vision (ICCV) Piscataway, NJ IEEE 2015 1026 1034 10.1109/ICCV.2015.123
  112. Nair , V. and Hinton , G.E. 2010
  113. Brocard , J.C. , Baronnet , F. , and O’Neal , H.E. Chemical Kinetics of the Oxidation of Methyl Tert-Butyl Ether (MTBE) Combust. Flame 52 C 1983 25 35 10.1016/0010-2180(83)90118-9
  114. El Kadi , B. and Baronnet , F. Study of the Oxidation of Unsymmetrical Ethers (ETBE, TAME) and Tentative Interpretation of Their High Octane Numbers J. Chim. Phys. 92 1995 706 725 10.1051/jcp/1995920706
  115. Fischer , S.L. , Dryer , F.L. , and Curran , H.J. The Reaction Kinetics of Dimethyl Ether. I: High-Temperature Pyrolysis and Oxidation in Flow Reactors Int. J. Chem. Kinet. 32 12 2000 713 740 10.1002/1097-4601(2000)32:12<713::AID-KIN1>3.0.CO;2-9
  116. Choo , K.Y. , Golden , D.M. , and Benson , S.W. Very Low-Pressure Pyrolysis (VLPP) Oft-Butylmethyl Ether Int. J. Chem. Kinet. 6 5 1974 631 641 10.1002/kin.550060503
  117. Liotta , F.J. , and Montalvo , D.M. The Effect of Oxygenated Fuels on Emissions from a Modern Heavy-Duty Diesel Engine SAE Technical Paper 932734 1993 https://doi.org/10.4271/932734
  118. Sivasankaralingam , V. , Raman , V. , Mubarak Ali , M.J. , Alfazazi , A. et al. Experimental and Numerical Investigation of Ethanol/Diethyl Ether Mixtures in a CI Engine SAE Technical Paper 2016-01-2180 2016 https://doi.org/10.4271/2016-01-2180
  119. Cai , L. , Sudholt , A. , Lee , D.J. , Egolfopoulos , F.N. et al. Chemical Kinetic Study of a Novel Lignocellulosic Biofuel: Di-n-Butyl Ether Oxidation in a Laminar Flow Reactor and Flames Combust. Flame 161 3 2014 798 809 10.1016/j.combustflame.2013.10.003

Cited By