Open Access

Investigations on Spark and Corona Ignition of Oxymethylene Ether-1 and Dimethyl Carbonate Blends with Gasoline by High-Speed Evaluation of OH* Chemiluminescence

Journal Article
04-11-01-0001
ISSN: 1946-3952, e-ISSN: 1946-3960
Published March 01, 2018 by SAE International in United States
Investigations on Spark and Corona Ignition of Oxymethylene Ether-1
                    and Dimethyl Carbonate Blends with Gasoline by High-Speed Evaluation of OH*
                    Chemiluminescence
Sector:
Citation: Langhorst, T., Toedter, O., Koch, T., Niethammer, B. et al., "Investigations on Spark and Corona Ignition of Oxymethylene Ether-1 and Dimethyl Carbonate Blends with Gasoline by High-Speed Evaluation of OH* Chemiluminescence," SAE Int. J. Fuels Lubr. 11(1):5-20, 2018, https://doi.org/10.4271/04-11-01-0001.
Language: English

References

  1. European Climate Foundation (ECF), “Roadmap 2050-A Practical Guide to a Prosperous, Low-Carbon Europe,” Brussels, 2010.
  2. Europäische Parlament und der Rat der Europäischen Union, Das, “Verordnung (EG) Nr. 443/2009 des Europäischen Parlaments und des Rates,” Brussels, 2009.
  3. Europäische Parlament und der Rat der Europäischen Union, Das, “Richtlinie 2009/28/EG des Europäischen Parlaments und des Rates,” Brussels, 2009.
  4. Searchinger, T. and Heimlich, R., “Avoiding Bioenergy Competition for Food Crops and Land,” Creat. a Sustain. Food Futur. (9), 2015, 44.
  5. Tessum, C.W., Hill, J.D., and Marshall, J.D., “Life Cycle Air Quality Impacts of Conventional and Alternative Light-Duty Transportation in the United States,” Proc. Natl. Acad. Sci. U.S.A. 111(52):18490-18495, 2014, doi:10.1073/pnas.1406853111.
  6. Lee, K., Seong, H., Sakai, S., Hageman, M. et al., “Detailed Morphological Properties of Nanoparticles from Gasoline Direct Injection Engine Combustion of Ethanol Blends,” SAE Technical Paper 2013-24-0185, 2013, doi:10.4271/2013-24-0185.
  7. Lee, K., Seong, H., Church, W., and McConnell, S., “Examination of Particulate Emissions from Alcohol Blended Fuel Combustion in a Gasoline Direct Injection Engine,” in Eighth Int. Conf. Model. Diagnostics Adv. Engine Syst. (COMODIA 2012), Fukuoka, Japan, 305-310, 2012.
  8. Wang-Hansen, C., Ericsson, P., Lundberg, B., Skoglundh, M. et al., “Characterization of Particulate Matter from Direct Injected Gasoline Engines,” Top. Catal. 56(1-8):446-451, 2013, doi:10.1007/s11244-013-9994-4.
  9. Luo, Y., Zhu, L., Fang, J., Zhuang, Z. et al., “Size Distribution, Chemical Composition and Oxidation Reactivity of Particulate Matter from Gasoline Direct Injection (GDI) Engine Fueled with Ethanol-Gasoline Fuel,” Appl. Therm. Eng. 89:647-655, 2015, doi:10.1016/j.applthermaleng.2015.06.060.
  10. Storch, M., Hinrichsen, F., Wensing, M., Will, S. et al., “The Effect of Ethanol Blending on Mixture Formation, Combustion and Soot Emission Studied in an Optical DISI Engine,” Appl. Energy 156:783-792, 2015, doi:10.1016/j.apenergy.2015.06.030.
  11. Sauer, J., Kolb, T., and Günther, A., “BtL - Das Karlsruher Bioliq-Verfahren,” Chemie Ing. Tech. 86(9):1356-1356, 2014, doi:10.1002/cite.201450348.
  12. Lautenschütz, L., “Neue Erkenntnisse in der Syntheseoptimierung oligomerer Oxymethylendimethylether aus Dimethoxymethan und Trioxan,” Dissertation, Karlsruhe Institute of Technology (KIT), Karlsruhe, 2015.
  13. Lautenschütz, L., Oestreich, D., Seidenspinner, P., Arnold, U. et al., “Physico-Chemical Properties and Fuel Characteristics of Oxymethylene Dialkyl Ethers,” Fuel 173:129-137, 2016, doi:10.1016/j.fuel.2016.01.060.
  14. Jacob, E. and Maus, W., “Oxymethylene Ether as Potentially Carbon-Neutral Fuel for Clean Diesel Engines Part 2: Compliance with the Sustainability Requirement,” MTZ Worldw. 78(3):52-57, 2017, doi:10.1007/s38313-017-0002-4.
  15. Feiling, A., Münz, M., and Beidl, C., “Potenzial des Synthetischen Kraftstoffs OME 1b,” Mot. Zeitschrift 2016:16-21, 2016.
  16. Iannuzzi, S., Barro, C., Boulouchos, K., and Burger, J., “Combustion Behavior and Soot Formation/Oxidation of Oxygenated Fuels in a Cylindrical Constant Volume Chamber,” Fuel 167:49-59, 2016, doi:10.1016/j.fuel.2015.11.060.
  17. Härtl, M., Seidenspinner, P., Jacob, E., and Wachtmeister, G., “Oxygenate Screening on a Heavy-Duty Diesel Engine and Emission Characteristics of Highly Oxygenated Oxymethylene Ether Fuel OME 1,” Fuel 153:328-335, 2015, doi:10.1016/j.fuel.2015.03.012.
  18. Bockhorn, H., Soot Formation in Combustion, (Berlin, Heidelberg: Springer-Verlag, 1994), ISBN: 3-540-58398-X.
  19. Europäische Komission, “International Chemical Safety Card on Dimethyl Carbonate (616-38-6),” Int. Progr. Chem. Saf., 2005.
  20. Europäische Parlament und der Rat der Europäischen Union, Das, “Verordnung (EG) Nr. 715/2007 Des Europäischen Parlaments und des Rates,” Brussels, 2007.
  21. Die Kommission der Europäischen Gemeinschaften, “Verordnung (EG) Nr. 692/2008 der Kommission,” Brussels, 2008.
  22. Die Europäische Kommission, “Verordnung (EU) 2016/646 der Kommission,” Brussels, 2016.
  23. Auerbach, B., “Eberspächer startet Serienproduktion von Ottopartikelfiltern,” Springer Professional, 2017.
  24. Schenk, M., Feßler, M., Rottengruber, H., and Fischer, H., “Comparison of the Thermodynamic Potential of Alternative Ignition Systems for SI-Engines,” in 10th International Symposium on Combustion Diagnostics, Baden-Baden, 138-157, May 22-23, 2012.
  25. Berndt, F., “Ottomotorische Magerbrennverfahren: NOx- und partikelarme Verbrennung durch neue Zünd- und Einspritzkonzepte,” Dissertation, TU Braunschweig, Braunschweig, ISBN: 9783844038446, 2015.
  26. Wolf, T., Schenk, M., Schröter, M., Zellinger, F. et al., “RF-Corona-Ignition vs. Spark Ignition: A Comparison for Varying Thermodynamic Conditions and Combustion Strategies of Modern Turbocharged Gasoline Engines,” 2nd International Conference on Ignition Systems for Gasoline Engines, Berlin, Germany,503-532, Nov 24-25, 2014.
  27. Hampe, C., “Hochfrequenz-Zündung für ottomotorische Brennverfahren,” Dissertation, Karlsruhe Institute of Technology, Karlsruhe, ISBN: 978-3-8325-4416-4, 2016.
  28. Auzas, F., “Décharge radiofréquence produite dans les gaz à pression élevée pour le déclenchement de combustion,” Dissertation, Université Paris Sud, Orsay, 2008.
  29. Toedter, O., Heinz, A., Disch, C., Koch, T. et al., “Comparing Visualization of Inflammation at Transient Load Steps Comparing Ignition Systems,” in Günther, M. and Sens, M., eds., Ignition Systems for Gasoline Engines-3rd International Conference, (Switzerland: Springer International Publishing, 2016), ISBN: 9783319455037, 325.
  30. Ranji-Burachaloo, H., Masoomi-Godarzi, S., Khodadadi, A.A., and Mortazavi, Y., “Synergetic Effects of Plasma and Metal Oxide Catalysts on Diesel Soot Oxidation,” Appl. Catal. B Environ. 182:74-84, 2016, doi:10.1016/j.apcatb.2015.09.019.
  31. Wang, P., Gu, W., Lei, L., Cai, Y., and Li, Z., “Micro-Structural and Components Evolution Mechanism of Particular Matter from Diesel Engines with Non-Thermal Plasma Technology,” Appl. Therm. Eng. 91:1-10, 2015, doi:10.1016/j.applthermaleng.2015.08.010.
  32. Storch, M., Nguyen, A.D., Wensing, M., Will, S., and Zigan, L., “Simultaneous High-Speed Imaging and Laser-Induced Incandescence (LII) for Investigation of the Sooting Combustion of Ethanol Fuel Blends in a DISI Engine,” in Proceedings of the European Combustion Meeting 2015, Budapest, Hungary, Mar 30-Apr 2, 2015, doi:10.4271/2014-01-2617.
  33. Burrows, J., Mixell, K., Reinicke, P.-B., Riess, M., and Sens, M., “Corona Ignition - Assessment of Physical Effects by Pressure Chamber, Rapid Compression Machine, and Single Cylinder Engine Testing,” in Ignition Systems for Gasoline Engines - 2nd International Conference, Berlin, Germany, ISBN 9783944976228, 87-107, 2014.
  34. Haber, L.C. and Vandsburger, U., “A Global Reaction Model for OH* Chemiluminescence Applied to a Laminar Flat-Flame Burner,” Combust. Sci. Technol. 175(10):1859-1891, 2003, doi:10.1080/713713115.
  35. Tinaut, F.V., Reyes, M., Giménez, B., and Pastor, J.V., “Measurements of OH* and CH* Chemiluminescence in Premixed Flames in a Constant Volume Combustion Bomb under Autoignition Conditions,” Energy and Fuels 25(1):119-129, 2011, doi:10.1021/ef1013456.
  36. Werler, M., “Untersuchungen der Niedertemperaturoxidation von Kohlenwasserstoffen in einer schnellen Kompressions-Expansions-Maschine,” Dissertation, Karlsruhe Institute of Technology, Karlsruhe, 2016.
  37. Maly, R. and Vogel, M., “Initiation and Propagation of Flame Fronts in Lean CH4-Air Mixtures by the Three Modes of the Ignition Spark,” Symposium on Combustion 17(1):821-831, 1979, doi:10.1016/S0082-0784(79)80079-X.
  38. Pischinger, S., Verbrennungsmotoren Band I,” 26th Edition, (Aachen: RWTH Aachen, 2007).
  39. U.S. Coast Guard Department of Transportation, CHRIS - Hazardous Chemical Data. Volume II, 5th Edition, (Washington, DC: U.S. Government Printing Office, 1984).
  40. Daubert, T.E. and Danner, R.P., Physical and Thermodynamic Properties of Pure Chemicals Data Compilation (Washington, DC, Taylor & Francis, 1989), ISBN: 9780891169482.
  41. Deutsch, D., Oestreich, D., Lautenschütz, L., Haltenort, P. et al., “High Purity Oligomeric Oxymethylene Ethers as Diesel Fuels,” Chem. Ing. Tech. 89(4):486-489, 2017, doi:10.1002/cite.201600158.
  42. Sivanathan, S. and Chandran, H., “Investigation on the Performance and Emission Characteristics of Biodiesel and Its Blends with Oxygenated Additives in a Diesel Engine,” SAE Technical Paper 2014-01-1261, 2014, doi:10.4271/2014-01-1261.
  43. Lide, D.R., CRC Handbook of Chemistry and Physics, Internet Version, (London: Taylor & Francis, 2005), ISBN: 1482260964.
  44. Otsu, N., “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. Syst. Man. Cybern. 9(1):62-66, 1979, doi:10.1109/TSMC.1979.4310076.
  45. Pischinger, F., Adomeit, G., Krause, E., Pitt, R. et al., “Sonderforschungsbereich 224 ‘Motorische Verbrennung’,” Lehrstuhl Für Verbrennungskraftmaschinen 729, 1995, http://www.sfb224.rwth-aachen.de/bericht.htm.
  46. Kratzsch, M. and Günther, M., Advanced Ignition Systems for Gasoline Engines, (Renningen, Germany: Expert Verlag, 2013), ISBN: 9783816931904.
  47. Shiraishi, T. and Urushihara, T., “Fundamental Analysis of Combustion Initiation Characteristics of Low Temperature Plasma Ignition for Internal Combustion Gasoline Engine,” SAE Technical Paper 2011-01-0660, 2011, doi:10.4271/2011-01-0660.
  48. Kosarev, I.N., Aleksandrov, N.L., Kindysheva, S.V., Starikovskaia, S.M. et al., “Kinetics of Ignition of Saturated Hydrocarbons by Nonequilibrium Plasma: C2H6- to C5H12-Containing Mixtures,” Combust. Flame 156(1):221-233, 2009, doi:10.1016/j.combustflame.2008.07.013.
  49. Gu, X.J., Emerson, D.R., and Bradley, D., “Modes of Reaction Front Propagation from Hot Spots,” Combust. Flame 133(1-2):63-74, 2003, doi:10.1016/S0010-2180(02)00541-2.
  50. Paschen, F., “Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz,” Ann. Phys. 273(5):69-96, 1889, doi:10.1002/andp.18892730505.
  51. Savitzky, A. and Golay, M.J.E., “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36(8):1627-1639, 1964, doi:10.1021/ac60214a047.
  52. Härtl, M., Seidenspinner, P., Wachtmeister, G., and Jacob, E., “Synthetic Diesel Fuel OME1 a Pathway Out of the Soot-NOx Trade-Off,” MTZ Worldw. 75(7-8):48-53, 2014, doi:10.1007/s38313-014-0173-1.
  53. Härtl, M., Gaukel, K., Pélerin, D., and Wachtmeister, G., “Oxymethylene Ether as Potentially CO2-Neutral Fuel for Clean Diesel Engines Part 1: Engine Testing,” MTZ Worldw. 78(2):52-59, 2017, doi:10.1007/s38313-016-0163-6.
  54. Kolah, A.K., Mahajani, S.M., and Sharma, M.M., “Acetalization of Formaldehyde with Methanol in Batch and Continuous Reactive Distillation Columns,” Ind. Eng. Chem. Res. 35(10):3707-3720, 1996, doi:10.1021/ie950563x.
  55. Masamoto, J. and Matsuzaki, K., “Development of Methylal Synthesis by Reactive Distillation,” J. Chem. Eng. Jpn. 27(1):1-5, 1994, doi:10.1252/jcej.27.1.
  56. Zhang, X., Zhang, S., and Jian, C., “Synthesis of Methylal by Catalytic Distillation,” Chem. Eng. Res. Des. 89(6):573-580, 2011, doi:10.1016/j.cherd.2010.09.002.
  57. Agirre, I., Barrio, V.L., Güemez, M.B., Cambra, J.F. et al., “Acetals as Possible Diesel Additives,” in Santos Bernardes, M.A.D., ed., Economic Effects of Biofuel Production, (InTech, 2011), 299-316, ISBN: 978-953-307-178-7, doi:10.5772/697.
  58. Matzner, M., Kurkjy, R.P., and Cotter, R.J., “The Chemistry of Chloroformates,” Chem. Rev. 64(6):645-687, 1964, doi:10.1021/cr60232a004.
  59. Babad, H. and Zeiler, A.G., “Chemistry of Phosgene,” Chem. Rev. 73(1):75-91, 1973, doi:10.1021/cr60281a005.
  60. Nishimura, K., Uchiumi, S., Fujii, K., Nishihara, K. et al., “Process for Preparing a Diester of Oxalic Acid,” (United States, 1980), U.S. Patent US4,229,589A.
  61. Miyazaki, Y., Shiomi, Y., Fujitsu, S., and Masunaga, K., “Process for the Preparation of Oxalic Acid Diesters,” U.S. Patent 4,384,133 A, 1983.
  62. Romano, U., Tesei, R., Cipriani, G., and Micucci, L., “Method for the Preparation of Esters of Carbonic Acid,” U.S. Patent 4,218,391 A, 1980.
  63. Hagen, G.P. and Spangler, M.J., “Continuous Catalytic Process for Preparation of Organic Carbonates,” BP Amoco Corporation, U.S. Patent 5,750,759 A, 2000.

Cited By