This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hierarchical Predictive Control of a Combined Engine/SCR System with Limited Model Knowledge

  • Journal Article
  • 03-13-02-0015
  • ISSN: 1946-3936, e-ISSN: 1946-3944
Published January 16, 2020 by SAE International in United States
Hierarchical Predictive Control of a Combined Engine/SCR System with Limited Model Knowledge
Citation: Geiselhart, R., Bergmann, D., Niemeyer, J., Remele, J. et al., "Hierarchical Predictive Control of a Combined Engine/SCR System with Limited Model Knowledge," SAE Int. J. Engines 13(2):2020.
Language: English

References

  1. Isermann, R. , Engine Modeling and Control (Berlin: Springer, 2014).
  2. Su, C., Brault, J., Munnannur, A., Liu, Z.G. et al. , “Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview,” SAE Int. J. Adv. & Curr. Prac. in Mobility 1(1):201-214, 2019, https://doi.org/10.4271/2019-01-0026.
  3. Guzzella, L. and Sciarretta, A. , Vehicle Propulsion Systems: Introduction to Modeling and Optimization (Berlin: Springer, 2007).
  4. Ericson, C., Westerberg, B., Odenbrand, I., and Egnell, R. , “Characterisation and Model Based Optimization of a Complete Diesel Engine/SCR System,” SAE Technical Paper 2009-01-0896 , 2009, https://doi.org/10.4271/2009-01-0896.
  5. Cloudt, R. and Willems, F. , “Integrated Emission Management Strategy for Cost-Optimal Engine-Aftertreatment Operation,” SAE Int. J. Engines 4(1):1784-1797, 2011, https://doi.org/10.4271/2011-01-1310.
  6. Skaf, Z., Aliyev, T., Shead, L., and Steffen, T. , “The State of the Art in Selective Catalytic Reduction Control,” SAE Technical Paper 2014-01-1533 , 2014, https://doi.org/10.4271/2014-01-1533.
  7. Brdys, M., Grochowski, M., Gminski, T., Konarczak, K., and Drewa, M. , “Hierarchical Predictive Control of Integrated Wastewater Treatment Systems,” Control Engineering Practice 16(6):751-767, 2008.
  8. Scattolini, R. , “Architectures for Distributed and Hierarchical Model Predictive Control a Review,” Journal of Process Control 19(5):723-731, 2009.
  9. Donkers, M., Schijndel, J.V., Heemels, W., and Willems, F. , “Optimal Control for Integrated Emission Management in Diesel Engines,” Control Engineering Practice 61:206-216, 2017.
  10. Harder, K. , “Hierarchische modellprädiktive Regelung eines Grodiesel-motors mit Abgasnachbehandlung,” Ph.D. dissertation, Shaker Verlag, Aachen, 2019.
  11. Chen, P. and Wang, J. , “Nonlinear Model Predictive Control of Integrated Diesel Engine and Selective Catalytic Reduction System for Simultaneous Fuel Economy Improvement and Emissions Reduction,” Journal of Dynamic Systems, Measurement, and Control 137(8):081008, 2015.
  12. Westerlund, C., Westerberg, B., Odenbrand, I., and Egnell, R. , “Model Predictive Control of a Combined EGR/SCR HD Diesel Engine,” SAE Technical Paper 2010-01-1175 , 2010, https://doi.org/10.4271/2010-01-1175.
  13. Harder, K., Buchholz, M., Niemeyer, J., Remele, J., and Graichen, K. , “A Real-Time Nonlinear MPC Scheme with Emission Constraints for Heavy-Duty Diesel Engines,” in 2017 American Control Conference (ACC), Seattle, WA, 2017, 240-245.
  14. Geiselhart, R., Bergmann, D., Niemeyer, J., Remele, J., and Graichen, K. , “Hierarchical Optimization of Operational Costs of a Heavy-Duty Diesel Engine and an Exhaust Aftertreatment System,” in 2019 European Control Conference (ECC), Naples, Italy, 2019.
  15. Nelder, J.A. and Mead, R. , “A Simplex Method for Function Minimization,” The Computer Journal 7(4):308-313, 1965.
  16. Englert, T., Völz, A., Mesmer, F., Rhein, S., and Graichen, K. , “A Software Framework for Embedded Nonlinear Model Predictive Control Using a Gradient-Based Augmented Lagrangian Approach (grampc),” Optimization and Engineering 20(3):769-809, 2018.
  17. Kokotovic, P., Khalil, H.K., and O’Reilly, J. , Singular Perturbation Methods in Control: Analysis and Design. Vol. 25 (Philadelphia, PA: SIAM, 1999).
  18. Ellis, M., Heidarinejad, M., and Christofides, P.D. , “Economic Model Predictive Control of Nonlinear Singularly Perturbed Systems,” Journal of Process Control 23(5):743-754, 2013.
  19. Bergmann, D., Buchholz, M., Niemeyer, J., Remele, J., and Graichen, K. , “Gaussian Process Regression for Nonlinear Time-Varying System Identification,” in Conference on Decision and Control (CDC), Miami, FL, 2018, 3025-3031.
  20. Rasmussen, C.E. and Williams, C.K. , Gaussian Processes for Machine Learning (Cambridge: MIT Press, 2006).

Cited By