This content is not included in your SAE MOBILUS subscription, or you are not logged in.

In-Use Efficiency of Oxidation and Three-Way Catalysts Used in High-Horsepower Dual Fuel and Dedicated Natural Gas Engines

Published July 1, 2018 by SAE International in United States
In-Use Efficiency of Oxidation and Three-Way Catalysts Used in
                    High-Horsepower Dual Fuel and Dedicated Natural Gas Engines
Citation: Johnson, D., Darzi, M., Clark, N., Nix, A. et al., "In-Use Efficiency of Oxidation and Three-Way Catalysts Used in High-Horsepower Dual Fuel and Dedicated Natural Gas Engines," SAE Int. J. Engines 11(3):383-398, 2018, https://doi.org/10.4271/03-11-03-0026.
Language: English

References

  1. U.S. Energy Information Administration, “Most Natural Gas Production Growth Is Expected to Come from Shale Gas and Tight Oil Plays,” http://www.eia.gov/todayinenergy/detail.php?id=26552, accessed February 22, 2017.
  2. DieselNet, “Emissions Test Cycles: ISO 8178,” https://www.dieselnet.com/standards/cycles/iso8178.php, accessed February 22, 2017.
  3. Eastern Research Group, Inc., “2014 Statewide Drilling Rig Emissions Inventory with Updated Trends Inventories - Final Report,” https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/ei/5821552832FY1505-20150731-erg-drilling_rig_2014_inventory.pdf, accessed January 30, 2017.
  4. Live Science, “Facts about Fracking,” http://www.livescience.com/34464-what-is-fracking.html, accessed February 22, 2017.
  5. Rodriguez, G. and Ouyang, C., “Air Emissions Characterization and Management for Natural Gas Hydraulic Fracturing Operations in the United States,” Master’s Project Report, University of Michigan School of Natural Resources and Environment, 2013, http://deepblue.lib.umich.edu/bitstream/handle/2027.42/97418/Air%20Emissions%20Hydraulic%20Fracturing_04-23-2013.pdf?sequence=1, accessed January 30, 2017.
  6. DieselNet, “Nonroad Diesel Engines,” https://www.dieselnet.com/standards/us/nonroad.php#tier3, accessed February 22, 2017.
  7. Cummins, “Cummins QSK Series Drilling Engines to Meet Tier 4 Final Using Integrated SCR Aftertreatment,” https://cumminsengines.com/cummins-qsk-series-drilling-engines-to-meet, accessed February 22, 2017.
  8. Caterpillar, “New Oil and Gas: 3512E Tier 4 Final, http://www.cat.com/en_US/products/new/power-systems/oil-and-gas/well-service-engines/1000004391.html, accessed February 22, 2017.
  9. U.S. Environmental Protection Agency, “Nonroad Large Spark-Ignition Engines: Exhaust and Evaporative Emission Standards,” https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100OA08.pdf, accessed February 22, 2017.
  10. Caterpillar, “Dynamic Gas Blending,” http://www.cat.com/en_US/support/operations/technology/dynamic-gas-blending.html, accessed February 22, 2017.
  11. Altronic, “GTI BI-FUEL Presentation,” http://www.glmri.org/downloads/lngMtg6-2012/GTI%20Bi-Fuel.pdf, accessed February 22, 2017.
  12. Cummins, “Cummins Dual Fuel Engines for Drilling,” https://cumminsengines.com/dual-fuel, accessed February 22, 2017.
  13. Addy, J., Bining, A., Norton, P., Peterson, E. et al., “Demonstration of Caterpillar C10 Dual Fuel Natural Gas Engines in Commuter Buses,” SAE Technical Paper 2000-01-1386, 2000, doi:10.4271/2000-01-1386.
  14. Wayne, S., Nine, R., Walkowicz, K., Proc, K. et al., “Chassis Dynamometer Emission Measurements from Refuse Trucks Using Dual fuel™ Natural Gas Engines,” SAE Technical Paper, 2003-01-3366, 2003, doi:10.4271/2003-01-3366.
  15. Clark, N., Lyons, D., Gautam, M., Addy, J. et al., “Chassis Dynamometer Emission Measurements from Trucks and Buses using Dual fuel Natural Gas Engines,” SAE Technical Paper 1999-01-3525, 1999, doi:10.4271/1999-01-3525.
  16. GE Power Generation, “Jenbacher Type 3 Gas Engines,” https://powergen.gepower.com/products/reciprocating-engines/jenbacher-type-3.html, accessed February 15, 2017.
  17. GE Power Generation, “Waukesha MobileFlex,” https://powergen.gepower.com/content/dam/gepower-pgdp/global/en_US/documents/product/Reciprocating%20Engines/waukesha-mobileflex-l5794-l7044gsi-epa-product-sheet.pdf, accessed February 15, 2017.
  18. Pulkrabek, W., Engineering Fundamentals of the Internal Combustion Engine (New Jersey: Pearson Prentice Hall, 2004).
  19. Heywood, J.B., Internal Combustion Engine Fundamentals (New York: McGraw Hill, Inc., 1988).
  20. Dallmann, T., Shao, Z., Menon, A., and Bandivadekar, A., “Non-Road Engine Technology Pathways and Emissions Projections for the Indian Agricultural and Construction Sectors,” SAE Technical Paper 2017-26-0230, 2017, doi:10.4271/2017-26-0230.
  21. Mansor, W., “Dual Fuel Engine Combustion and Emissions - An Experimental Investigation Coupled with Computer Simulation.” Ph.D. diss., Colorado State University, 2014.
  22. Besch, M., Israel, J., Thiruvengadam, A., Kappanna, H. et al., “Emissions Characterization from Different Technology Heavy-Duty Engines Retrofitted for CNG/Diesel Dual-Fuel Operation,” SAE Int. J. Engines 8(3):1342-1358, 2015, doi:10.4271/2015-01-1085.
  23. Watling, T., Ahmadinejad, M., Ţuţuianu, M., Johansson, Å. et al., “Development and Validation of a Pt-Pd Diesel Oxidation Catalyst Model,” SAE Int. J. Engines 5(3):1420-1442, 2012, doi:10.4271/2012-01-1286.
  24. Shakya, B., Sukumar, B., López-De Jesús, Y., and Markatou, P., “The Effect of Pt:Pd Ratio on Heavy-Duty Diesel Oxidation Catalyst Performance: An Experimental and Modeling Study,” SAE Int. J. Engines 8(3):1271-1282, 2015, doi:10.4271/2015-01-1052.
  25. Tamanouchi, M., Morihisa, H., Araki, H., and Yamada, S., “Effects of Fuel and Oxidation Catalyst on Exhaust Emissions for Heavy Duty Diesel Engines and Diesel Passenger Cars,” SAE Technical Paper 980530, 1998, doi:10.4271/980530.
  26. Mogi, H., Tajima, K., Hosoya, M., and Shimoda, M., “The Reduction of Diesel Engine Emissions by Using the Oxidation Catalysts of Japan Diesel 13 Mode Cycle,” SAE Technical Paper 1999-01-0471, 1999, doi:10.4271/1999-01-0471.
  27. Khair, M. and McKinnon, D., “Performance Evaluation of Advanced Emission Control Technologies for Diesel Heavy-Duty Engines,” SAE Technical Paper 1999-01-3564, 1999, doi:10.4271/1999-01-3564.
  28. Flörchinger, P., Ortiz, M., and Ingram-Ogunwumi, R., “Comparative Analysis of Different Heavy Duty Diesel Oxidation Catalysts Configurations,” SAE Technical Paper 2004-01-1419, 2004, doi:10.4271/2004-01-1419.
  29. Noipheng, A., Waitayapat, N., Aroonsrisopon, T., Wirojsakunchai, E. et al., “Experimental Investigation of Applying Raw Fuel Injection Technique for Reducing Methane in Aftertreatment of Diesel Dual Fuel Engines Operating under Medium Load Conditions,” SAE Technical Paper 2011-01-2093, 2011, doi:10.4271/2011-01-2093.
  30. Goto, Y., Kato, N., Kawashima, S., Hayashi, Y. et al., “Applicable Diesel Oxidation Catalyst for Multi-Diesel Exhaust System,” SAE Int. J. Fuels Lubr. 7(2):496-502, 2014, doi:10.4271/2014-01-1511.
  31. Nazarpoor, Z., Golden, S., and Liu, R., “Development of Advanced Ultra-Low PGM DOC for BS VI DOC+CDPF+SCR System,” SAE Int. J. Mater. Manf. 10(1):72-77, 2017, doi:10.4271/2017-26-0142.
  32. Di Iorio, S., Magno, A., Mancaruso, E., and Vaglieco, B., “Performance, Gaseous and Particle Emissions of a Small Compression Ignition Engine Operating in Diesel/Methane Dual Fuel Mode,” SAE Technical Paper 2016-01-0771, 2016, doi:10.4271/2016-01-0771.
  33. Ottinger, N., Veele, R., Xi, Y., and Liu, Z., “Desulfation of Pd-Based Oxidation Catalysts for Lean-burn Natural Gas and Dual-fuel Applications,” SAE Int. J. Engines 8(4):1472-1477, 2015, doi:10.4271/2015-01-0991.
  34. Worth, D., Stetler, M., Dickinson, P., Hegarty, K. et al., “Characterization and Evaluation of Methane Oxidation Catalysts for Dual-Fuel Diesel and Natural Gas Engines,” Emiss. Control Sci. Technol. 2:204-214, 2016, doi:10.1007/s40825-016-0047-x.
  35. Wirojsakunchai, E., Aroonsrisopon, T., Wannatong, K., and Akarapanjavit, N., “A Simulation Study of an Aftertreatment System Level Model for Diesel Dual Fuel (DDF) Engine Emission Control,” SAE Technical Paper 2009-01-1966, 2009, doi:10.4271/2009-01-1966.
  36. Andersson, B., Cruise, N., Lunden, M., and Hansson, M., “Methane and Nitric Oxide Conversion Over a Catalyst Dedicated for Natural Gas Vehicles,” SAE Technical Paper 2000-01-2928, 2000, doi:10.4271/2000-01-2928.
  37. Hirasawa, Y., Tanaka, Y., Banno, Y., and Nagata, M., “Development of Methane Oxidation Catalyst and Its Mechanism,” SAE Technical Paper 2005-01-1098, 2005, doi:10.4271/2005-01-1098.
  38. Hu, L. and Williams, S., “Sulfur Poisoning and Regeneration of Pd Catalyst under Simulated Emission Conditions of Natural Gas Engine,” SAE Technical Paper 2007-01-4037, 2007, doi:10.4271/2007-01-4037.
  39. Williams, S., Hu, L., Nakazono, T., Ohtsubo, H. et al., “Oxidation Catalysts for Natural Gas Engine Operating under HCCI or SI Conditions,” SAE Int. J. Fuels Lubr. 1(1):326-337, 2009, doi:10.4271/2008-01-0807.
  40. Guliaeff, A., Wanninger, K., Klose, F., Maletz, G. et al., “Development of a Sulfur Tolerant PGM Based Zeolite Catalyst for Methane Oxidation and Low Temperature Hydrocarbon Trapping,” SAE Technical Paper 2013-01-0531, 2013, doi:10.4271/2013-01-0531.
  41. Kim, J., Kim, E., Han, J., and Han, H., “Pt/Pd Bimetallic Catalyst with Improved Activity and Durability for Lean-Burn CNG Engines,” SAE Int. J. Fuels Lubr. 6(3):651-656, 2013, doi:10.4271/2013-01-2591.
  42. Johnson, T., “Vehicular Emissions in Review,” SAE Int. J. Engines 7(3):1207-1227, 2014, doi:10.4271/2014-01-1491.
  43. Shi, X., Seiser, R., Chen, J., Dibble, R. et al., “Fuel-Dithering Optimization of Efficiency of TWC on Natural Gas IC Engine,” SAE Int. J. Engines 8(3):1246-1252, 2015, doi:10.4271/2015-01-1043.
  44. Johnson, D., Heltzel, R., Nix, A., Clark, N. et al., “Greenhouse Gas Emissions and Fuel Efficiency of In-Use High Horsepower Diesel, Dual Fuel, and Natural Gas Engines for Unconventional Well Development,” Applied Energy 206:739-750, 2017, doi:10.1016/j.apenergy.2017.08.235.
  45. Papagiannakis, R., Rakopoulos, C., Hountalas, D., and Rakopoulos, C., “Emission Characteristics of High Speed, Dual Fuel Compression Ignition Engine Operating in a Wide Range of Natural Gas/Diesel Fuel Proportions,” Fuel 89(7):1397-1407, 2010, doi:10.1016/j.fuel.2009.11.001.
  46. Gatts, T., Liu, S., Liew, C., Ralston, B. et al., “An Experimental Investigation of Incomplete Combustion of Gaseous Fuels of a Heavy-Duty Diesel Engine Supplemented with Hydrogen and Natural Gas,” Int. J. Hydrogen Energy 37(9):7848-7859, 2012, doi:10.1016/j.ijhydene.2012.01.088.
  47. Johnson, D., Heltzel, R., Nix, A., Clark, N. et al., “Regulated Gaseous Emissions from In-use High Horsepower Drilling and Hydraulic Fracturing Engines,” J. Pollut. Eff. Cont. 5:187, 2017, doi:10.4176/2375-4397.1000187.
  48. McAllister, S., Chen J., and Carlos, F.P., Fundamentals of Combustion Processes. Springer, New York, 2011.
  49. Johnson, D., Heltzel, R., Nix, A., Darzi, M. et al., “Estimated Emissions from the Prime-Movers of Unconventional Natural Gas Well Development Using Recently Collected In-Use Data in the United States,” Environ. Sci. Technol., 2017, doi:10.1021/acs.est.7b06694.

Cited By