The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x
 This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Multicriteria Optimization, Sensitivity Analysis, and Prediction of Bond Characteristics of Vacuum Diffusion Bonded Aero Engine Ti6Al4V Alloy Joints

  • Journal Article
  • 01-12-02-0008
  • ISSN: 1946-3855, e-ISSN: 1946-3901
Published December 13, 2019 by SAE International in United States
Multicriteria Optimization, Sensitivity Analysis, and Prediction of Bond Characteristics of Vacuum Diffusion Bonded Aero Engine Ti6Al4V Alloy Joints
Sector:
Citation: Pragatheswaran, T., Rajakumar, S., Balasubramanian, V., Kavitha, S. et al., "Multicriteria Optimization, Sensitivity Analysis, and Prediction of Bond Characteristics of Vacuum Diffusion Bonded Aero Engine Ti6Al4V Alloy Joints," SAE Int. J. Aerosp. 12(2):153-174, 2019.
Language: English

References

  1. Pilling, J., Livesey, D.W., Hawkyard, J.B., and Ridley, N. , “Solid State Bonding in Superplastic Ti-6Al-4V,” Metal Science 18(3):117-122, 1984, https://doi.org/10.1179/msc.1984.18.3.117.
  2. Li, H., Li, M., Yu, W.-X., and Liu, H.-B. , “Significance and Interaction of Bonding Parameters with Bonding Ratio in Press Bonding of TC4 Alloy,” Rare Metals 35(3):235-241, 2014, https://doi.org/10.1007/s12598-014-0330-3.
  3. Andrze Jewski, H.F., Badawi, K., and Rolland, B. , “Influence of Surface Conditions on the Diffusion Bonding of TA6V Alloy,” Welding International 5(6):444-448, 2010, https://doi.org/10.1080/09507119109446768.
  4. Tuppen, S.J., Bache, M.R., and Voice, W.E. , “Structural Integrity of Diffusion Bonds in Ti-6Al-4V Processed via Low Cost Route,” Material Science and Technology 22(12):1423-1430, 2006, https://doi.org/10.1179/174328406X129922.
  5. Singh, K.P., Patel, A., and Bhope, K. , “Optimization of the Diffusion Bonding Parameters for SS316L/CuCrZr with and without Nickel Interlayer,” Fusion Engineering and Design 112:274-282, 2016, https://doi.org/10.1016/j.fusengdes.2016.09.004.
  6. Basuki, W.W. and Aktaa, J. , “Process Optimization for Diffusion Bonding of Tungsten with EUROFER97 Using a Vanadium Interlayer,” Journal of Nuclear Materials 459:217-224, 2015, https://doi.org/10.1016/j.jnucmat.2015.01.033.
  7. Kim, D. and Rhee, S. , “Optimization of Arc Welding Process Parameters Using a Genetic Algorithm,” Welding Journal 80(7):184s-189s, 2001.
  8. Pérez Pozo, L., Olivares, Z.F., and Duran, O. , “Optimization of Welding Parameters Using a Genetic Algorithm: A Robotic Arm-Assisted Implementation for Recovery of Pelton Turbine Blades,” Advances in Mechanical Engineering 7(11), 2015, https://doi.org/10.1177/1687814015617669.
  9. Katherasan, D., Elias, J.V., Sathiya, P., and Haq, A.N. , “Simulation and Parameter Optimization of Flux Cored Arc Welding Using Artificial Neural Network and Particle Swarm Optimization Algorithm,” Journal of Intelligent Manufacturing 25(1):67-76, 2014, https://doi.org/10.1007/s10845-012-0675-0.
  10. Rajakumar, S., Muralidharan, C., and Balasubramanian, V. , “Establishing Empirical Relationships to Predict Grain Size and Tensile Strength of Friction Stir Welded AA 6061-T6 Aluminium Alloy Joints,” Transactions of Nonferrous Metal Society of China 20(10):1863-1872, 2010, https://doi.org/10.1016/S1003-6326(09)60387-3.
  11. Dinaharan, I., Murugan, N., and Parameswaran, S. , “Developing an Empirical Relationship to Predict the Influence of Process Parameters on Tensile Strength of Friction Stir Welded AA6061/0-10 wt% ZrB2 In Situ Composite,” Transactions of Indian Institute of Metals 65(2):159-170, 2012, https://doi.org/10.1007/s12666-012-0119-8.
  12. Rajakumar, S., Muralidharan, C., and Balasubramanian, V. , “Optimization of the Friction-Stir-Welding Process and Tool Parameters to Attain a Maximum Tensile Strength of AA7075-T-6 Aluminium Alloy,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 224(8):1175-1191, 2010, https://doi.org/10.1243/09544054JEM1802.
  13. Nagaraju, S., Vasantharaja, P., and Chandrasekhar, N. , “Optimization of Welding Process Parameters for 9Cr-1Mo Steel Using RSM and GA,” Materials and Manufacturing Process 31(3):319-327, 2016, https://doi.org/10.1080/10426914.2015.1025974.
  14. Rajakumar, S. and Balasubramanian, V. , “Diffusion Bonding of Titanium and AA 7075 Aluminum Alloy Dissimilar Joints-Process Modeling and Optimization Using Desirability Approach,” International Journal of Advanced Manufacturing Technology 86(1-4):1095-1112, 2016, https://doi.org/10.1007/s00170-015-8223-7.
  15. Ananthakumar, K. and Kumaran, S. , “Experimental Investigation and Prediction of Optimum Process Parameter for Plasma Assisted Diffusion Bonding of Commercial Pure Titanium and Austenitic Stainless Steel,” Arabian Journal of Science and Engineering 44(2):1017-1032, 2019, https://doi.org/10.1007/s13369-018-3384-y.
  16. Fernandus, M.J., Senthilkumar, T., Balasubramanian, V., and Rajakumar, S. , “Optimizing Diffusion Bonding Parameters to Maximize the Strength of AA6061 Aluminum and AZ61A Magnesium Alloy Joints,” Experimental Techniques 38(4):21-36, 2014, https://doi.org/10.1111/j.1747-1567.2012.00815.x.
  17. Arun Negemiya, A., Rajakumar, S., and Balasubramanian, V. , “High-Temperature Diffusion Bonding of Austenitic Stainless Steel to Titanium Dissimilar Joints,” Material Research Express 6(6):66572, 2019, https://doi.org/10.1088/2053-1591/ab1053.
  18. Akca, E. and Gursel, A. , “The Effect of Diffusion Welding Parameters on the Mechanical Properties of Titanium Alloy and Aluminum Couples,” Metals (Basel) 7(1):22, 2017, https://doi.org/10.3390/met7010022.

Cited By