The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x
 This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Enhancing Flight Path Separation to Reduce Bird Strikes with Ultraviolet Radiation

  • Journal Article
  • 01-12-02-0005
  • ISSN: 1946-3855, e-ISSN: 1946-3901
Published October 29, 2019 by SAE International in United States
Enhancing Flight Path Separation to Reduce Bird Strikes with Ultraviolet Radiation
Citation: Ronning, D., "Enhancing Flight Path Separation to Reduce Bird Strikes with Ultraviolet Radiation," SAE Int. J. Aerosp. 12(2):99-116, 2019.
Language: English


  1. Federal Aviation Administration National Wildlife Strike Database Serial Report Number 24, Wildlife Strikes to Civil Aircraft in the United States, 1990-2017, Jan. 2019, v-vii.
  2. Fact Sheet - The Federal Aviation Administration’s Wildlife Hazard Mitigation Program,
  3. Stadtmueller, T. , “Rotorcraft Bird Strike Data,” Dec. 2016, DOT/FAA/TC-TN16/48. This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161. This document is also available from the Federal Aviation Administration William J. Hughes Technical Center at
  4. Soldatini, C. . In: DeVault T., Blackwell B., and Belant J. , editors. Wildlife in Airport Environments: Preventing Animal-Aircraft Collisions through Science-Based Management. (Baltimore, MD, Johns Hopkins University Press, 2013), doi:10.1111/jofo.12073_5.
  5. McKee, J., Shaw, P., Dekker, A., and Patrick, K. , “Approaches to Wildlife Management in Aviation,” . In: Angelici F. , editor. Problematic Wildlife. (Cham, Springer, 2016), doi:10.1007/978-3-319-22246-2_22.
  6. Goller, B., Blackwell, B.F., DeVault, T.L., Baumhardt, P.E. et al. , “Assessing Bird Avoidance of High-Contrast Lights Using a Choice Test Approach: Implications for Reducing Human-Induced Avian Mortality,” Peer J 6(9):E5404, 2018.
  7. Sliney, D.H., Bergman, R., and O’hagan, J. , “Photobiological Risk Classification of Lamps and Lamp Systems-History and Rationale,” LEUKOS 12(4):213-234, 2016.
  8. Foss, C., Ronning, D., and Merker, D. , “Intense Short-Wavelength Light Triggers Avoidance Response by Red-Tailed Hawks: A New Tool for Raptor Diversion?” The Condor 119(3):431-438, 2017.
  9. Witzel, C., and Gegenfurtner, K. (2015), “Chromatic Contrast Sensitivity in Luo, R. et al.,” Encyclopedia of Color Science and Technology, doi:10.1007/978-3-642-27851-8_17-1.
  10. Stoddard, M.C. and Prum, R.O. , “Evolution of Avian Plumage Color in a Tetrahedral Color Space: A Phylogenetic Analysis of New World Buntings,” The American Naturalist 171(6):755-776, 2008, doi:10.1086/587526.
  11. Morena, L., Diaz, N., and Guido, M. , “Horizontal Cells Expressing Melanopsin x Are Novel Photoreceptors in the Avian Inner Retina,” Proceedings of the National Academy of Sciences 113(46):13215-13220, 2016, doi:10.1073/pnas.1608901113.
  12. Hunt, D. and Peichl, L. , “S Cones: Evolution, Retinal Distribution, Development, and Spectral Sensitivity,” Visual Neuroscience 31(2):115-138, 2014, doi:10.1017/S0952523813000242.
  13. Mitkus, M. , Spatial Vision in Birds: Anatomical Investigation of Spatial Resolving Power (Lund University Publications, 2015).
  14. Lischka, K., Simone, L. et al. , “Expression Patterns of Ion Channels and Structural Proteins in a Multimodal Cell Type of the Avian Optic Tectum,” Journal of Comparative Neurology 526(3):412-424, 2018, doi:10.1002/cne.24340.
  15. Jarvis, E.D., Güntürkün, O., Bruce, L. et al. , “Avian Brains and a New Understanding of Vertebrate Brain Evolution,” Nature Reviews Neuroscience 6(2):151-159, 2005, doi:10.1038/nrn1606.
  16. McLeod, S. “Visual Perception Theory,” Simply Psychology, accessed Mar. 2019,
  17. Odeen, A. and Hastad, O. , “The Phylogenetic Distribution of Ultraviolet Sensitivity in Birds,” BMC Evolutionary Biology 13:1-10, 2013, doi:10.1186/1471-2148-13-36.
  18. Wylie, D., Gutiérrez-Ibáñez, C. et al. , “Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight,” Frontiers in Neuroscience 12:223, 2018, doi:10.3389/fnins.2018.00223.
  19. Shimizu, T. and Bowers, A.N. , “Visual Circuits of the Avian Telencephalon: Evolutionary Implications,” Behavior Brain Research 98(2):183-191, Feb. 1999, doi:10.1016/S0166-4328(98) 00083-7.
  20. Souza, G., Gomes, B., and Silveira, L. , “Comparative neurophysiology of spatial luminance contrast sensitivity,” Psychology & Neuroscience 4(1):29-48, 2011, doi:10.3922/j.psns.2011.1.005.
  21. Rubene, D., Hastad, O., Tauson, H. et al. , “The Presence of UV Wavelengths Improves the Temporal Resolution of the Avian Visual System,” Journal of Experimental Biology 213:3357-3363, 2010, doi:10.1242/jeb.042424.
  22. Blackwell, B. et al. , “Avian Responses to Aircraft in an Airport Environment,” The Journal of Wildlife Management 83(4):893-901, 2019, doi:10.1002/jwmg.21650.
  23. Fernández-Juricic, E. et al. , “Testing the Terrain Hypothesis: Canada Geese See Their World Laterally and Obliquely,” Brain, Behavior and Evolution 77(3):147-158, 2011.
  24. Moore, B.A., Baumhardt, P., Doppler, M., Randolet, J. et al. , “Oblique Color Vision in an Open-habitat Bird: Spectral Sensitivity, Photoreceptor Distribution and Behavioral Implications,” The Journal of Experimental Biology 15(19):3442-3452, 2012.

Cited By