Your Selections

Wind tunnel tests
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Aerodynamic analysis of electric passenger car using wind turbine concept at front end

ARAI Academy-Snehil Mendiratta, Sugat Sharma
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2396
Published 2019-11-21 by SAE International in United States
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9% .
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Aerodynamic analysis of commercial vehicle using active vortex generators concept

ARAI Academy-Saurabh Jayant Kulkarni, Kamalkishore Vora
Automotive Research Association of India-Mohammad Rafiq Agrewale
  • Technical Paper
  • 2019-28-2409
Published 2019-11-21 by SAE International in United States
Any physical body being propelled through the air has drag associated with it. Drag will be created on the surface of the vehicle due to the flow separation at the rear end. In aerodynamics the flow separation can often result in increased drag particularly pressure drag, to delay the flow separation, the vortex generators are used on the roof end of the vehicle just before the point of flow separation. The objective of this project is to perform aerodynamic analysis of commercial vehicle using active vortex generators concept. First, the aerodynamic analysis of a baseline commercial vehicle model is performed and same is validated with the scaled model by using a wind tunnel test. Further analysis has been done by using active vortex generators concept with variation of angle of attacks for vehicle speed of 50, 70, 90 kmph. Also, analysis has been carried out for six different yaw angles. The simulation is carried out with the use of ANSYS Fluent. The simulation result shows the significant drag coefficient reduction of the commercial vehicle with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Aerodynamic Analysis of a Passenger Car to Reduce Drag Using Active Grill Shutter and Active Air Dam

ARAI Academy-Raghav Tandon
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2408
Published 2019-11-21 by SAE International in United States
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The optimized model is then validated for a scaled-down prototype in a wind tunnel at 80kmph. Vehicle has been modelled using SolidWorks and the simulation has been carried out using ANSYS Fluent. The result shows a significant drag reduction of 12.23% using active grill shutters and air dams.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Study on effect of HVAC Air Flow Distribution on Windows Fogging

Hyundai Motor India Engineering-Santhosha Vigneshwaran, Eeshan Geel, G Sundrasekaran
  • Technical Paper
  • 2019-28-2414
Published 2019-11-21 by SAE International in United States
Windshield & Windows fogging up in cars has long been a topic of interest & concern. Lot of research has already been put into Front/Rear windshield fogging up issue and, Defrosters, Heated Windshields have been designed to remove the fog effectively. However, Windows Fogging up is still one of the major concerns faced while driving, as it obscures the drivers' field of vision and raises safety concerns. Windows fogging up is a phenomenon in which Moisture is condensed on the glass of the window. It is classified into two categories - Inside Fogging and Outside Fogging. When Ambient temperature is lower than the cabin temperature, the moisture is condensed on the inside surface of the glass. In this case the moisture is added inside the cabin by the occupants when they exhale air. Similarly when the Cabin temperature is lower than the ambient temperature, the moisture from atmosphere is condensed on the outer surface of the glass. A Survey with 500 Indian Customers has been conducted to understand the occurrence of Windows fog up issue…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Developing a Theory for Active Grille Shutter Aerodynamics-Part 2: Effect of Flap Thickness and Shape

Dr. Ing. h.c. F. Porsche AG-Thomas Wolf
  • Technical Paper
  • 2019-01-5095
Published 2019-11-19 by SAE International in United States
A recently developed theory for the description of the aerodynamic behaviour of active grille shutters is extended by the influence of the thickness of the cooling air flaps. The analysis of the resulting equations shows that the thickness of the flaps has no influence on the characteristic curve of an active grille shutter. To validate the theoretical results, wind tunnel measurements are carried out on a vehicle with an active grille shutter, and both the thickness and the shape of the flaps are specifically modified. The experimental results confirm the analytical results and show that not the thickness but the shape of the cooling air flaps is the decisive influencing factor. The experiments further show that aerodynamically unfavourable flap shapes, even with small relative thicknesses, lead to a significant change in the characteristic curve and to significant losses in cooling airflow with fully opened flaps. In contrast to this, with flow-optimized flap shapes, relative thicknesses of up to 30% of the flap length are possible without changing the characteristic curves or significantly reducing the cooling…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Overset Mesh-Based Computational Investigations on the Aerodynamics of a Generic Car Model in Proximity to a Side-Wall

SAE International Journal of Passenger Cars - Mechanical Systems

University of North Carolina at Charlotte, USA-Charles Patrick Bounds, Srivatsa Mallapragada, Mesbah Uddin
  • Journal Article
  • 06-12-03-0015
Published 2019-10-21 by SAE International in United States
This article discusses an approach to simulating a generic idealized car model (Ahmed body) moving in close proximity to a side-wall, using a transient Computational Fluid Dynamics (CFD) method. This phenomenon is very important in motorsports, where racing close to the safety barrier is common. Driving in close proximity to a side-wall alters the aerodynamic characteristics of the vehicle significantly; however, only a handful of published works exist in this area. Additionally, the experimental studies conducted in the past suffer from certain inadequacies, especially in terms of simulating the side-wall. This casts some uncertainty as to the relevance of these studies to the real-world problem. The present study attempts to imitate the real-world flow phenomenon by taking a nontraditional CFD approach of translating the body relative to the stationary surrounding fluid and side-wall instead of the classical method of flowing air over a stationary vehicle model. This was achieved by using a relatively new and computationally efficient meshing technique for overlapping grids called the “Overset” or “Chimera” mesh. The initial task was to accurately predict…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

CFD Simulation on Turbulent Forced Convection of Copper Oxide (CuO) -Water Nanofluids in a Horizontal Circular Pipe

John Deere India Pvt, Ltd.-Nitin Dewangan, Nitin Kattula
Published 2019-10-11 by SAE International in United States
The present study provides a detailed investigation on simulation of Copper oxide nanofluids in a simple horizontal circular pipe considering turbulent forced convection, with a constant heat flux boundary condition. The simulation is carried out using three different models available in fluent viz. Newtonian single phase model, Eulerian-mixture and Eulerian-Eulerian multiphase models. The Reynold number of the flow is varied along with volume concentration of nanoparticles varying form low to high. Nanofluids rheology is studied by considering standard k-ε two equation turbulence model with enhanced wall treatment considering appropriate wall y+ values. The effective temperature dependent thermo-physical properties for nanofluids were seized from the literatures. The results from the simulation clearly showed an increase in the heat transfer characteristics with the addition of nanoparticles compared to that of base fluid alone. Eulerian-Mixture model predicted the Nusselt number near to that of the experimental results from literature.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Aeroacoustic Prediction for Effectiveness of Vortex Suppression Methods for Bluff Bodies at Various Reynolds Numbers

SRM Institute of Science and Technology-Sanhita Padia, Dewanshu Deep, Senthilkumar Sundararaj
Published 2019-10-11 by SAE International in United States
Noise of almost every form is considered undesirable and hence its reduction is an important area of study. Aerodynamically generated noise due to vortex shedding in the wake of bluff bodies is a major source of such undesirable noise in applications involving overhead wires, poles, automotive components and aircraft landing gears. Vortex suppression methods are employed in these cases to reduce the noise generated by suppressing the pressure fluctuations arising near the bluff body surface. For the present study, flow past different bluff bodies is simulated using commercial CFD software, ANSYS FLUENT, with and without involving suppression methods. The calculations for flow field are performed by solving the two-dimensional governing equations for unsteady isothermal incompressible viscous flow. Turbulence modelling is performed using Large Eddy Simulation (LES) with Smagorinsky-Lilly subgrid model. Simulations for far-field noise are carried out using Ffowcs-Williams and Hawkings model and different aeroacoustic parameters like overall sound pressure level and sound pressure level are computed for different receiver locations. The effectiveness of different suppression methods is tested at different Reynolds numbers and their…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Measurement of Aerodynamic Performance for Mass-Produced Cars and Light-Duty Trucks

Road Vehicle Aerodynamics Forum Committee
  • Ground Vehicle Standard
  • J2881_201910
  • Current
Published 2019-10-09 by SAE International in United States
This Recommended Practice provides a procedure for measuring and documenting the aerodynamic performance in a full-scale wind tunnel of passenger vehicles, i.e., mass-produced cars and light-duty trucks intended primarily for individual consumers. Testing or numerical modeling of pre-production and/or reduced-scale models is outside the scope of this document. Aerodynamic development procedures, i.e., methods to improve or optimize aerodynamic performance, are also excluded. It is well-known that aerodynamic performance results depend significantly on vehicle content and loading, as well as the wind tunnel itself (type, scale, and simulation qualities of the wind tunnel). Publication of non-standard test results causes unnecessary additional development work and incorrect perception of a vehicle’s anticipated aerodynamic performance by government, academia, and the general public. The intent of this document is to promote uniformity and traceability of published aerodynamic performance data acquired in a wind tunnel, thereby enhancing the public reputation and credibility of the aerodynamics discipline in the total vehicle development process. Measurement of the aerodynamic performance according to this Recommended Practice requires a full-scale wind tunnel test on a production-ready,…
This content contains downloadable datasets
Annotation ability available

Influence of Leading-Edge Oscillatory Blowing on Time-Accurate Dynamic Store Separation

  • Magazine Article
  • TBMG-35362
Published 2019-10-01 by Tech Briefs Media Group in United States

Increasing the operational efficiency of weapons employed in hostile environments is a high priority of the United States Air Force (USAF). In recent history, the USAF has made a move to smaller and internally stored weapons, especially for fighter aircraft. Maintaining a low radar cross section signature, and thus a low observable air vehicle, is desirable so the aircraft is less detectable by the enemy.