Your Selections

Welding
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Investigation of Metallurgical, Mechanical Properties of Hastelloy X by Keyhole Plasma Arc Welding Process

Vellore Institute of Technology-Mathiyazhagan Sathishkumar, Chooriyaparambil Damodaran Naiju, Manoharan Manikandan
  • Technical Paper
  • 2019-28-0152
To be published on 2019-10-11 by SAE International in United States
This research work studies effect of microsegregation, microstructure and tensile strength of the Hastelloy x weldment produced by plasma arc welding (PAW). Weld joint was obtained in the single pass without the addition of filler wire. The significant results obtained in this research work are (i) fine equiaxed dendrite was detected in the weld centre due to lesser heat input (HI) along with the faster solidification attained in PAW (ii) The existence of secondary precipitates in the interdendritic boundary was identified by the scanning electron microscope (SEM) analysis (iii) Energy dispersive X-ray spectroscope (EDS) revealed the Cr and Mo microsegregation in interdendritic boundary of the weld zone (iv) X-ray diffraction (XRD) analysis confirmed the Mo-rich MoNi4 (P) phase and Cr-rich M23C6 phase. The observed tensile result of weldment is inferior to base metal. The development of secondary precipitates in the weld zone affected the tensile properties of the weld joint.
 

Corrosion characteristics on friction stir welding of dissimilar AA2014/AA6061 alloy for automobile application.

Bannari Amman Institute of Technology-Sadhasivam Deepankumar, Anbalagan Ramakrishnan, Dinesh Dhanabalan
Vellore Institute of Technology-Govindasamy Rajamurugan, Prabu Krishnasamy
  • Technical Paper
  • 2019-28-0063
To be published on 2019-10-11 by SAE International in United States
Friction Stir Welding (FSW) is a widely used solid state welding process in which its heats metal to below recrystallization temperature. FSW mostly avoids welding defects like hot cracking and porosity which are mainly in conventional welding techniques due to alloy’s higher heat dissipating nature and low re-crystallization temperature. In this process combining mechanical work and deformation heating to get high defect free welding joints. Aluminium Alloys 2014 and 6061 are generally used in a wide range of applications such as an automobile, shipbuilding and aerospace due to their high corrosion resistance, lightweight and good mechanical properties. In the present work, aluminium alloys of AA6061 and AA2014 were effectively welded by friction stir welding technique. The mechanical and Corrosion behaviour of the welded joints were investigated at different welding parameters.
 

Mechanical and Metallurgical analysis of HSLA steel for Gas Tungsten Arc Welding with different shielding gases

CSI College of Engineering-Dhanraj Gurusamy, Prashanth Murthy, Senthilkumar Ramakrishnan, Sivakumar Nanjappan
Sri Krishna College of Engineering and Technology-Soundararajan Ranganathan
  • Technical Paper
  • 2019-28-0069
To be published on 2019-10-11 by SAE International in United States
The special designed HSLA (High Speed Low Alloy) Steel is most commonly used in Naval Steel Structures and aircraft structures due to its indigenous properties. The aim of this paper is used to investigate the effect of shielding gas in the Gas Tungsten Arc Welding process. The sheet plate of size 300mmx150mmx10mm is taken and welded by GTAW process using argon and helium on the shielding gas. DMR 249A plates are welded by GTAW by using helium and argon as shielding gas with a flow rate of 16 L/min, the interpass temperature is 140ᵒ C and the heat input is less than 1.2KJ/min which is maintained to get a balanced phases of α and γ where the impact toughness, Tensile and micro hardness was studied with different shielding gas and the metallurgical properties were analysed in the base metal, heat affected zones and weld zones. The sheets contain 1.9%Ti and 6.2% Ni and the weld beads were studied for both the type of shielding gases. The study reveals that for helium gas the penetration is…
 

Study of Mechanical Properties of Similar and Dissimilar Metals of Monel 400 and SS 321by using Gas Tungsten Arc Welding (GTAW) Process

Geethanjali College of Engg. and Tech.-Sudarshan Rikka, Devaiah Malkapuram
  • Technical Paper
  • 2019-28-0141
To be published on 2019-10-11 by SAE International in United States
ABSTRACT In the present study the fabrication of joints between the nickel base alloys and steels of various grades have been under taken, joining of these metals has assumed new importance by virtue of their widespread in nuclear and aerospace applications. Such joints provide excellent strength, oxidation and corrosion resistance. This paper deals with the study of weldability, and mechanical properties of weld joints of two different alloys such as nickel based alloy- monel 400 and austenitic stainless steel AISI 321. The joining of the similar and dissimilar metals is carried out by GTAW process by employing two different types of filler rods such as SS321 and ERNiCrMo-3. Mechanical properties such as Ultimate tensile strength, Young’s Modulus are found as per ASTM testing standards, percentage of elongation aslso found to know the joint efficiency and Microhardness survey across the weld joint to estimate the hardness variations at different locations such as Weld zone of the matel, Heat Affected Zone (HAZ), and Base metal. Key Words: GTAW process, UTS, Hardness, Nickel based alloy - monel 400…
 

Advances in Laser Welding of Stainless Steel Alloys

BSACIST-Varun Kumar Arulvizhi, Selvakumar Alandur Somasundaram, Mohammed Haareeskhan Niyaz, Pradeep Krishna Ranganathan, Afnan Zaid Moolai, Mohamed Ashfaq Ahmed Abdulla Burhanudeen, Mohan Raj Ramu
  • Technical Paper
  • 2019-28-0056
To be published on 2019-10-11 by SAE International in United States
As a fusion welding process, Laser welding has proven to be the most promising method for joining of different materials it can be either a similar or dissimilar material category. However, few complications still remain unanswered in joining of materials by laser process after successful implementation of laser’s by industries and also the commercial users in previous year’s such as workpiece preparation, fixture issues, atmospheric conditions, nozzle focus on the material, etc., This article will give an elaborate survey on joining of stainless steel alloys, though there are many factors to be considered in a survey article here we concentrated on the metallurgical behaviour and tensile properties of weldments joined by laser welding technique, because the main criteria for a weldment is to have a coarse grain boundary distribution which may be distorted due to high heat generation during a joining process and to possess good tensile strength in order to withstand the impacts given on the weldment when it is being practically deployed in usage. The material behavior of weldment is primarily based on…
 

Investigation on microstructure and mechanical properties of corrosion resistance alloy C-2000 fabricated by conventional arc welding technique

Hawassa University-Sivan Rajkumar
KPR Institute of Engg and Technology-Balasubramanian Arulmurugan
  • Technical Paper
  • 2019-28-0177
To be published on 2019-10-11 by SAE International in United States
In the current work the metallurgical and tensile properties of the weld joints of alloy C-2000 were investigated. Welding technique employed in this study is Tungsten Inert Gas Welding (TIG) and Pulsed Current Tungsten Inert Gas (PC-TIG) welding with autogenous mode and Ni-Cr-Mo rich ERNiCrMo-10 filler wire. The results show that PC-TIG weldment obtained the refined microstructure compared to the TIG weldment. Energy dispersive spectroscopy (EDS) showed the extent of Cr segregation was observed in all the weldments. PC-TIG welding shows reduced segregation compared to the corresponding TIG. X-ray diffraction (XRD) corroborated the existence of Ni3Cr2 phases in the weld fusion zone. Tensile test results show the PC-TIG weldment obtained marginally higher tensile properties comparing over the corresponding TIG weldment. The strength of the weldments is inferior in all cases in comparison to base metal.
 

Experimental Investigation Mechanical and Corrosion Characteristics of Friction Stir Welded Aluminum Alloy 7075-T6

Assistant Professor-Deepankumar S
  • Technical Paper
  • 2019-28-0175
To be published on 2019-10-11 by SAE International in United States
Friction Stir Welding (FSW) is a quite new solid-state joining process. This joining technique is energy efficient, environment friendly, and adaptable. In particular, it can be used to join high-strength Aluminium alloys and other metallic alloys that are difficult to weld by conventional fusion welding. Friction Stir Welding heats metal to the temperature below re crystallization. FSW avoids welding defects like porosity and hot cracking which are frequently in conventional welding techniques due to alloy’s very low re-crystallization temperature and higher heat dissipating nature. This process combining deformation heating and mechanical work to obtain high defect free joints. Aluminum alloy 7075-T6 is generally used in various industrial applications such as automobile, ship building and aerospace due to their light weight, good mechanical properties and high corrosion resistance. In the present study, aluminum alloy 7075-T6 was successfully made by friction stir welding technique. The Corrosion, micro structure analysis and mechanical behavior of the welded joints were investigated at different welding parameters.
 
new

Flux, Aluminum Welding

AMS B Finishes Processes and Fluids Committee
  • Aerospace Material Specification
  • AMS3414F
  • Current
Published 2019-08-20 by SAE International in United States

This specification covers an aluminum welding flux in the form of powder.

 
new

FITTING, ADAPTER, BULKHEAD, EXTERNAL THREAD, BEAM SEAL TO INTEGRAL WELD RING

G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
  • Aerospace Standard
  • AS4229B
  • Current
Published 2019-08-16 by SAE International in United States

Scope is unavailable.

 
new

Fitting, Elbow, 90°, Bulkhead, External Thread, Beam Seal to Integral Weld Ring

G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
  • Aerospace Standard
  • AS4233D
  • Current
Published 2019-08-16 by SAE International in United States

SCOPE IS UNAVAILABLE.