The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Turbofan engines
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Implementation and Comparison of Model Co-Simulation Methods in a Turbofan Model

Southwest Research Institute-Charles Krouse, Brendan Nelson-Weiss
  • Technical Paper
  • 2020-01-0003
Published 2020-03-10 by SAE International in United States
The process of developing, parameterizing, validating, and maintaining models occurs within a wide variety of tools, and requires significant time and resources. To maximize model utilization, models are often shared between various toolsets and experts. Model integration is typically divided into two categories: model exchange and model co-simulation. Of these two categories, model co-simulation is typically regarded as the more complex and difficult to implement. Co-Simulation provides the ability to integrate models between different toolsets or incompatible versions of the same software. Additionally, it provides the capabilities for real-time simulations and hardware-in-the-loop test scenarios. This paper reviews some of the common co-simulation data communication methods including pipes and file input/output. The differences between serial and parallel, aka synchronous and asynchronous, communication patterns are also discussed. A simple turbofan model was developed to demonstrate the aforementioned methods. The turbofan model was developed in a legacy version of NPSS, and this legacy model was integrated with a high-fidelity turbine model developed in a newer version of the NPSS software. The integration of the legacy turbojet model with…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aircraft Engine Technology Review - The Pathways for an Efficient, Cleaner and Quieter Aviation Industry

FCB Research and Consulting-Fábio Coelho Barbosa
  • Technical Paper
  • 2019-36-0175
Published 2020-01-13 by SAE International in United States
The aviation industry has been submitted to a set of environmental and commercial drivers that have led it to pursue engine technologies focused on the efficiency improvement, greenhouse (CO2) and pollutant (NOx and PM) emissions reductions, as well as noise abatement.The effort to comply with the ambitious long term environmental and efficiency targets set by the regulatory authorities has driven the aeronautic industry in a technological research effort. In the medium term, the aviation industry's strategy for commercial aviation is to focus on the advanced, but rather conventional propulsion systems (mainly turbofan engines). In this scenario, technological efforts have focused basically on enhancing thermal efficiency, through advanced core engines, as well as improving propulsive efficiency, through the use of low pressure systems (basically reduced pressure ratio and increased engine bypass ratio). To reach these objectives, a set of technological platforms has been proposed, with some already on an operational/commercial level, while others still in a prototype category. In this context, engine manufacturers have given a special focus on some technological approaches, like Ultra High Bypass…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Using Engine Test Data to Model Engine Performance

S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
  • Aerospace Standard
  • AIR5509A
  • Current
Published 2019-11-05 by SAE International in United States
This document defines the process steps involved in collecting and processing engine test data for use in understanding engine behavior. It describes the use of an aero-thermal cycle model for reduction and analysis of those data. The analysis process may include the calculation of modifiers to match the model to measured data and prediction of engine performance based on that analysis.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Implementation of Digital Twin for Predicting Failures in Automobiles Using Machine Learning Algorithms

VIT Universtity-Kalivaradhan Ramesh Babu
Vellore Institute of Technology-Ponnuraman Balakrishnan, Chooriyaparambil Damodaran Naiju, Muthaiyan Madiajagan
Published 2019-10-11 by SAE International in United States
The drastic technological advancements in the field of autonomous vehicles and connected cars lead to substantial progression in the commercial values of automobile industries. However, these advancements force the Original Equipment Manufacturers (OEMs) to shift from feedback-based reactive business analysis to operational-data based predictive analysis thereby enhancing both the customer satisfaction as well as business opportunities. The operational data is nothing but the parameters obtained from several parts of an automobile during its operation such as, temperature in radiator, viscosity of the engine oil and force applied over the brake disk. These operational data are gathered using several sensors implanted in different parts of an automobile and are continuously transmitted to backend computers to develop Digital Twin, which is a virtual model of the physical automobile. Later, gathered operational data are analyzed using data mining algorithms to predict the failures of an automobile well in advance, better insights into performance of an automobile thereby recommending alternative design choices and remote service management of failures by a professional technician. Firstly, this research work illustrates the platform…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Method for Predicting Lateral Attenuation of Airplane Noise

A-21 Aircraft Noise Measurement Aviation Emission Modeling
  • Aerospace Standard
  • AIR5662
  • Current
Published 2019-10-04 by SAE International in United States
This document describes analytical methods for calculating the attenuation of the level of the sound propagating from an airplane to locations on the ground and to the side of the flight path of an airplane during ground roll, climbout after liftoff, and landing operations. Both level and non-level ground scenarios may be modeled using these methods, however application is only directly applicable to terrain without significant undulations, which may cause multiple reflections and/or multiple shielding effects. This attenuation is termed lateral attenuation and is in excess of the attenuation from wave divergence and atmospheric absorption. The methods for calculating the lateral attenuation of the sound apply to: turbofan-powered transport-category airplanes with engines mounted at the rear of the fuselage (on the sides of the fuselage or in the center of the fuselage as well as on the sides) or under the wings propeller-driven transport-category or general-aviation airplanes propagation over ground surfaces that may be considered to be “acoustically soft” such as lawn or field grass situations where the terrain to the sides of the flight…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Landing Gear Integration into Aircraft Structure in Early Design Stage

Bauhaus Luftfahrt EV-Ulrich Kling, Mirko Hornung
Published 2019-09-16 by SAE International in United States
The demanded development towards various emission reduction goals set up by several institutions forces the aerospace industry to think about new technologies and alternative aircraft configurations. With these alternative aircraft concepts, the landing gear layout is also affected. Turbofan engines with very high bypass ratios could increase the diameter of the nacelles extensively. In this case, mounting the engines above the wing could be a possible arrangement to avoid an exceedingly long landing gear. Thus, the landing gear could be shortened and eventually mounted at the fuselage instead of the wings. Other technologies such as high aspect ratio wings have an influence on the landing gear integration as well. To assess the difference, especially in weight, between the conventional landing gear configuration and alternative layouts a method is developed based on preliminary structural designs of the different aircraft components, namely landing gear, wing and fuselage. Simplified parametric finite element structural models for the different components are introduced. These models are used to investigate different aircraft configurations with special regard on the landing gear integration. The…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Test Cell Analytical Thrust Correction

EG-1E Gas Turbine Test Facilities and Equipment
  • Aerospace Standard
  • AIR5436A
  • Current
Published 2019-07-02 by SAE International in United States
This document describes a method to correct engine thrust, measured in an indoor test cell, for the aerodynamic effects caused by the secondary airflow induced in the test cell by the engine operating in an enclosed environment in close proximity to an exhaust duct. While it is not recommended to be used to replace test cell correlation, it does provide a means to verify an existing thrust correlation factor.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Semi-Empirical Modelling of Erosion Phenomena for Ice Crystal Icing Numerical Simulation

SAE International Journal of Advances and Current Practices in Mobility

ONERA-Virgile Charton, Pierre Trontin, Philippe Villedieu
SAFRAN Aircraft Engines-Gilles Aouizerate
  • Journal Article
  • 2019-01-1967
Published 2019-06-10 by SAE International in United States
The aim of this work is to develop a semi-empirical model for erosion phenomena under ice crystal condition, which is one of the major phenomena for ice crystal accretion. Such a model would be able to calculate the erosion rate caused by impinging ice crystals on accreted ice layer.This model is based on Finnie [1] and Bitter [2] [3] solid/solid collision theory which assumes that metal erosion due to sand impingement is driven by two phenomena: cutting wear and deformation wear. These two phenomena are strongly dependent on the particle density, velocity and shape, as well as on the surface physical properties such as Young modulus, Poisson ratio, surface yield strength and hardness. Moreover, cutting wear is mostly driven by tangential velocity and is more effective for ductile eroded body, whereas deformation wear is driven by normal velocity and is more effective for brittle eroded body. Several researchers based their erosion modelling on these two phenomena such as Hutchings et al. [4] for deformation erosion, or Huang et al. [5] and Arabnejad et al. [6]…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Microwave Technique for Liquid Water Detection in Icing Applications

University of Oxford-Matthew McGilvray, David Gillespie
University of Southern Queensland-John Leis, David Buttsworth, Ramiz Saeed, Khalid Saleh
Published 2019-06-10 by SAE International in United States
The partial melting of ingested ice crystals can lead to ice accretion in aircraft compressors, but accurately measuring the relatively small fraction of liquid water content in such flows is challenging. Probe-based methods for detecting liquid water content are not suitable for deployment within turbofan engines, and thus alternatives are sought. Recent research has described approaches based on passive microwave sensing. We present here an approach based on active microwave transmission and reflection, employing a vector network analyzer. Utilization of both transmission and reflection provides additional data over and above emission or transmission only, and permits a more controllable environment than passive sensing approaches. The paper specifically addresses the question of whether such an approach is viable within the context of representative icing wind tunnel and engine flow conditions. A quasi-thermal equilibrium approach is presented herein to estimate the melting ratio during microwave analysis of samples at 0 °C. Experimental results using microwaves in the 2.45GHz region are presented, and post-processing methods investigated. This is followed by an investigation of detection limits for ice accretion…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Wind Tunnel Measurements of Simulated Glaciated Cloud Conditions to Evaluate Newly Developed 2D Imaging Probes

Artium Technologies Inc.-William D. Bachalo
CIRA, Italian Aerospace Research Centre-Biagio M. Esposito
Published 2019-06-10 by SAE International in United States
Instrumentation that has been used for characterization of mixed-phase and glaciated conditions in the past, like the OAP probes, are subject to errors caused by variations in diffraction on the images away from the object plane and by the discrete nature of their particle detection and sizing. Correction methods are necessary to consider their measurements adequate for high ice water content (IWC) environments judged to represent a significant safety hazard to propellers and turbofan engine operability and performance. For this reason, within the frame of EU FP7 HAIC project, instrumentation characterization and validation is considered a major element need for successful execution of flight tests campaigns. Clearly, instrumentation must be sufficiently reliable to assess the reproducibility of artificial clouds with high ice water content generated in icing tunnels. Instruments are required to measure these conditions with a sufficient level of accuracy for the purposes of the testing. Currently, there is an anticipated basic uncertainty of a factor of 2-5 when measuring clouds in-situ. This may be worse for thunderstorm core regions, because of the poorly…
This content contains downloadable datasets
Annotation ability available