Your Selections

Turbochargers
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

Tafe Motors and Tractors Limited-Omprakash Yadav, Piyush Ranjan, Vishal Kumar, Vasundhara Arde, Sanjay Aurora, Remesan Chirakkal
  • Technical Paper
  • 2019-28-2549
To be published on 2019-11-21 by SAE International in United States
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure. Various combustion parameters such as Combustion Bowl Geometry, selection of Turbocharger, Swirl, FIP, Nozzle configuration, EGR flow rate, EGR operation strategy, optimizing injection pressures, start of injection, end of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

APPLICATION ORIENTED HYBRIDIZED DYNAMIC MODELS OF POWERTRAIN CONTROL FOR CONNECTED VEHICLES – A CASE STUDY ON TURBOCHARGER CONTROL

Continental Germany-Richard Kopold
Continental India-Vivek Venkobarao
  • Technical Paper
  • 2019-28-2443
To be published on 2019-11-21 by SAE International in United States
In a connected vehicle environment, the engine drive cycles operate in synchronized and regulated manner. This requires smooth transitions for improved CO_2 footprint. To arrive at this, there is need for intelligent and faster airpath control at transients. Authors aim to model and control every actuator of a coupled system in a synchronized manner with faster dynamic response. The turbocharger control is vital and forms heart of the system; This demands accurate position prediction of VTG. Deriving a control law for turbocharger is challenging due to the hybridized nature of turbocharger models in engine management system. It becomes extremely critical to estimate accurately, the position of VTG without introduction of any sensing devices. The control engineer always need to solve the trade-off between the controller performance KPI’s – rise time, transient response, controllability, observability and capability – stability and dynamics response etc. Author propose a model which improve the performance and capability of VTG control. Author presents a novel technique to model VTG position. A neural network based supervised learning model is derived. The model…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Implementation of Reconfigurable Manufacturing Systems in the Manufacturing of Turbo Charger Turbine Housing

Turbo Energy Private Ltd-Murugan Vanamurthy
Turbo Energy Private Ltd.-Kumaran Aravindh, Kumaran Arun
Published 2019-10-11 by SAE International in United States
Today manufacturing industries have become more competitive and to survive, industries should be capable of accommodating the sudden market change. The conventional manufacturing systems like Dedicated Manufacturing Lines (DMLs) can produce high volume of product but difficult to cater to varying product types. On the other hand, Flexible Manufacturing System (FMS) is capable of handling product variety but not suited for mass production, The Reconfigurable Manufacturing System (RMS) gives the advantage of both the system, as it has the capability to adjust to both high volume requirement and product variety, and it able to upgrade to new process technology with minimal effort. In this work the reconfiguration is carried out in machine and system level. At machine level, a new inspection machine is proposed which can be used for multiple products with minimal adjustments and a special drilling and bore tool is suggested to reduce the cycle time and ramp up time when product changes. At system level a new layout is proposed which can handle multiple products effectively and which requires less space compared…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Features of Mathematical Modeling in the Problems of Determining the Power of a Turbocharged Engine According to the Characteristics of the Turbocharger

SAE International Journal of Engines

Kherson State Maritime Academy, Ukraine-Igor Gritsuk, Maksym Ahieiev, Dmytro Pohorletskyi, Igor Khudiakov
National University “Odessa Law Academy”, Ukraine-Vadym Popeliuk
  • Journal Article
  • 03-13-01-0001
Published 2019-10-08 by SAE International in United States
The features of modeling the working process of a turbocharged two stroke marine diesel engine (MDE) in order to reveal the relationship between the engine power and the operation modes of a turbocharger (TC) are discussed in the article. Based on the results of modeling, a model was obtained for the dependence of the power of the MDE on the parameters of the TC operation. As a basic parameter of the TC operation, the TC speed was chosen. The scavenging air temperature is selected as an additional parameter. The article describes the structure of a diagnostic system that allows recording the operating modes of a TC in a noncontact method. The research for vibroacoustic fields of the G70-883kW marine engine was carried out by the author on ship “SEMINOLE,” in the process of research a noncontact vibroacoustic method was used to determine the TC speed. An analysis of the obtained experimental results demonstrates that the use of the averaged model of the dependence of the engine power on the TC speed for one engine family…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Turbocharger Thermal Transfer Model Initialization: Quasi-Adiabatic Map Calculation

Ecole Centrale De Nantes-Guillaume Goumy, Pierre Marty, Pascal Chesse, Nicolas Perrot, Rémi Dubouil, Georges Salameh
Published 2019-10-07 by SAE International in United States
To comply with the evermore stringent polluting emission regulation, such as Euro 6c and its new homologation WTLP cycle, the use of turbochargers, already high in Diesel engines, is steeply rising in Gasoline ones. Turbochargers come into a large variety of implementations such as single/two stage(s) or even parallel. In the meantime, car manufacturers intend to decrease development cost and time by using more and more simulation over experimental measurements. However, usual turbocharger models have not followed this trend of modernity.While the heating part of the standard driving test cycle becomes a major topic, turbocharger models are still map based, built from turbocharger manufacturer’s data and measured only in hot conditions. To improve their accuracy, new turbocharger models need to take into account the thermal transfers. The phenomenon has been widely studied, and different models have been proposed to solve this problem but they require specific data for their calibration. This is hardly compatible with the industry habits.Deriving from an initial turbocharger model with thermal transfer, this paper presents a method to evaluate quasi-adiabatic turbine…
This content contains downloadable datasets
Annotation ability available

Avoiding Electrical Damage with Conductive Lubrication

  • Magazine Article
  • TBMG-35293
Published 2019-10-01 by Tech Briefs Media Group in United States

At present, 12 volts are required to provide automotive electronic systems — which include vehicle lights, air conditioning, and radio — with sufficient electrical power. With each passing year, new cars get more complicated and high-tech. Additional features such as stop-start motors, hybrid motors, and turbochargers will allow for better fuel economy but will also demand more battery power.

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends Web Seminar RePlay

  • Webinar Recordings
  • PD331858
Published 2019-09-19
Turbocharging is an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, turbocharging is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This replay discusses the basic concepts of turbocharging and air flow management of four-stroke engines. It explores the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria. Topics include spark ignition and diesel engine systems, the impact of different applications. The course also covers the interaction between turbocharging and engine systems and the impact on performance, fuel economy, and emissions. Developments in turbocharging technology are also covered.By participating in this course, you will be able to: Identify the basics of how a turbocharger works, how to measure the appropriateness of a turbocharger, and how to select and match a turbocharger to the needs of your powertrainEstimate the impact of turbocharging on performance and emissionsRecognize potential issues such as packaging, noise, driveability, reliability, and durabilityList the latest developments in…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Axial Flow Turbine Concept for Conventional and e-Turbocharging

Brunel University-Apostolos Pesyridis
Universita di Napoli Federico II-Alessandro Cappiello, Raffaele Tuccillo, Maria Cristina Cameretti
Published 2019-09-09 by SAE International in United States
Engine downsizing has established itself as one of the most successful strategies to reduce fuel consumption and pollutant emissions in the automotive field. To this regard, a major role is played by turbocharging, which allows an increase in engine power density, so reducing engine size and weight. However, the need for turbocharging imposes some issues to be solved. In the attempt of mitigating turbo lag and poor low-end torque, many solutions have been presented in the open literature so far, such as: low inertia turbine wheels and variable geometry turbines; or even more complex concepts such as twin turbo and electrically assisted turbochargers. None of them appears as definitive, though.As a possible way of reducing turbine rotor inertia, and so the turbo lag, also the change of turbine layout has been investigated, and it revealed itself to be a viable option, leading to the use of mixed-flow turbines. Only recently, the use of axial-flow turbines, with the aim of reducing rotor inertia, has been proposed as well.The current paper documents a case study involving the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Application of a Quasi-3D Model for the Simulation of Radial Compressors of Turbochargers for Internal Combustion Engines

Politecnico di Milano-Gianluca Montenegro, Matteo Tamborski, Augusto Della Torre, Angelo Onorati, Andrea Marinoni
Università degli Studi di Genova-Silvia Marelli
Published 2019-09-09 by SAE International in United States
In this work the 3Dcell method, a quasi3D approach developed by the Internal Combustion Engine Group at Politecnico di Milano, has been extended and applied to the fluid dynamic simulation of turbocharging devices for internal combustion engines, focusing on the compressor side. The 3Dcell is based on a pseudo-staggered leapfrog method applied to the governing equation of a 1D problem arbitrarily oriented in space. The system of equations is solved referring to the relative system in the rotating zone, whereas the absolute reference system has been used elsewhere. The vaneless diffuser has been modelled resorting to the conservation of the angular momentum of the flow stream in the tangential direction, combined with the solution of the momentum equation in the radial direction. Source terms due to the presence of the centrifugal force field and its potential have been included both in the energy and momentum conservation equations to account for the interaction of the fluid with the moving blades. The model has been validated against measurements carried out on a steady state flow test bench…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental and Numerical Analysis of a Dual Fuel Operation of Turbocharged Engine at Mid-High Load

Univ. of Zagreb-Darko Kozarac, Mladen Bozic, Ante Vucetic, Josip Krajnovic, Momir Sjeric
Published 2019-09-09 by SAE International in United States
In the paper the operation of a turbocharged dual fuel engine at mid-high load is investigated on a single cylinder experimental engine complemented by a full 0D/1D simulation model that provides boundary conditions for the experiment and full engine system results. When duel fuel combustion mode is used on a turbocharged engine with the variable geometry turbocharger, the mid-high load operating points can be obtained with number of different combinations of intake pressure and excess air ratio. Besides the impact on combustion, the specific combination of intake pressure - excess air ratio has also impact on the exhaust back pressure caused by the turbocharger and consequently on the obtained brake efficiency. Additionally, the dual fuel combustion is influenced by natural gas mass fraction and start of injection of diesel fuel and the search for the optimal solution could be a challenging task. The method presented here enables the use of a single cylinder experimental engine in this search, while simultaneously taking into account the influences of the effects of a full engine system. The results…
This content contains downloadable datasets
Annotation ability available