Your Selections

Seals and gaskets
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Ultra-Low-Friction and Zero-Leakage Mechanical Seal for High-Speed e-Mobility Shaft Sealing Applications

Eagle Industry Co., Ltd.-Yuichiro Tokunaga, Nobuo Nakahara, Masatoshi Itadani
  • Technical Paper
  • 2020-01-1090
To be published on 2020-04-14 by SAE International in United States
By the year 2020, EU legislation limits CO2 emissions for new passenger cars to a maximum of 95 g/km, and further reductions to 68 g/km are expected. An electric motor (e-motor) with high power density often requires shaft cooling in combination with increased rotational speeds to boost efficiency. Especially, low friction and durability of sealing faces are essential to overcome severe friction under high-speed rotation. This challenge can be resolved by using the revolutionary GlideXTM sealing technologies, featuring advanced surface-texturing that enables microscopic flow control in dynamic sealing faces. The surface-textured mechanical seal can reduce leakage to the level of insignificance and up to 90% less friction, compared to a non-textured seal. The advanced texturing produces a thin liquid-sealing film between sealing faces, and liquid-lubrication becomes dominant at low speeds; at high speeds, gas-lubrication becomes dominant by manipulating liquid ingress into sliding surfaces. As a result, the textured seal can maintain low friction even at very high-speed rotations, taking advantage of air as less viscous lubricant. Low friction promotes less wear, more service life, and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental and Computational Studies of the No-Load Churning Loss of a Truck Axle

Dana Incorporated-Steven Wesolowski
Lubrizol-Farrukh Qureshi
  • Technical Paper
  • 2020-01-1415
To be published on 2020-04-14 by SAE International in United States
This paper describes the work performed in predicting and measuring the contribution of oil churning to the no-load losses of a commercial truck axle at typical running speeds. A computational fluid dynamics (CFD) analysis of the churning losses was conducted. The CFD model accounts for design geometry, operating speed, temperature, and lubricant properties. The model calculates the oil volume fraction and the torque loss caused by oil churning due to the viscous and inertia effects of the fluid. CFD predictions of power losses were then compared with no-load measurements made on a specially developed, dynamometer-driven test stand. The same axle used in the CFD model was tested in three different configurations: with axle shafts, with axle shafts removed, and with ring gear and carrier removed. This approach to testing was followed to determine the contribution of each source of loss (bearings, seals, and churning) to the total loss. After bearing and seal loss measurements and predictions were factored in, the churning loss measurement and prediction comparisons were made. Experimental and computational results compared favorably. This…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fretting Damage Analysis and Predicting of Engine Head and Block

Great Wall Motor Co., Ltd.-Rong Ye, Yuwei Han, Xiaowei Sun, Jianxiang Shi, Ying Guan, Guodong Zhao
  • Technical Paper
  • 2020-01-1167
To be published on 2020-04-14 by SAE International in United States
Today engine downsizing, weight reduction, boosting, etc. are widely used in modern combustion engine designs in order to increase power output, improve fuel economy, and reduce emission. However utilizing of these advanced technologies is making the engine less rigidity and resulting in potential fretting damages on any contact surfaces of engine components due to higher cyclic relative motions. The leakage failure of the cylinder-head sealing system induced by fretting damage on engine head and block deck surfaces is the one of major failure modes in the modern combustion engine. In this paper, the characteristics and failure modes of the MLS head gasket sealing system is introduced first. The fretting mechanism between MLS head gasket and engine head and block is then investigated and a fretting damage parameter and a damage criterion as well are defined and established to evaluate the crack nucleation or wear initiation. Also it is important to identify two types of loads during engine operation in the fretting damage calculation. The developed methodology is successfully verified through a good correlation between CAE…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

FCA US LLC-Wensheng Zhang, Erich Gernand
Oakland University-Bingxu Wang, Gary Barber, Na Lyu
  • Technical Paper
  • 2020-01-1069
To be published on 2020-04-14 by SAE International in United States
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode. The results have validated the feasibility of the proposed test system and procedure, which can be used for durability…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Crevice Corrosion Accelerated Test for Cylinder Head/Gasket/Monoblock Assemblies from Lightweight Engines Considering Overheating Effects

Instituto Politecnico Nacional Esime Zac-Gerardo Rodríguez-Bravo, Roberto Vega-Moron
Instituto Politécnico Nacional ESIQIE-Jesús Godínez-Salcedo
  • Technical Paper
  • 2020-01-1067
To be published on 2020-04-14 by SAE International in United States
Severe crevice corrosion occurring at the joint of cylinder head/gasket/mono-block from lightweight engines causes accelerated dissolution of lightweight material, in particular, in the cylinder head. It facilitates the linking of cooling vessels with the combustion chambers or oil vessels in both the cylinder head and monoblock. It is conductive to combustion of coolant or oil, and contamination of oil with coolant or vice versa, which is considered as catastrophic engine failure. Since crevice corrosion is dependent of assembly characteristics, coolant and engine operation conditions, full-scale tests are the most frequent alternative for this type of evaluations. Nonetheless, they are very long and expensive, and sometimes, unreliable. Alternatively, the standard procedure ASTM-G78 is widely used to evaluate accelerated crevice corrosion of different metallic materials under certain specified immersion conditions using a corrosive media. However, this method does not cover the characteristics and conditions existing at the cylinder head/gasket/mono-block joint. This paper presents an accelerated test consisting on three-electrode cyclic potentiodynamic anodic polarization and polarization resistance standard tests using special assembly samples to replicate the actual cylinder…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

FCC Co., Ltd.-Takahiro Tsuchiya, Masatoshi Miyagawa, Shinji Nakamura, Matthew Wendel
Ford Motor Company-Hiral Haria, James McCallum, Yuji Fujii
  • Technical Paper
  • 2020-01-1414
To be published on 2020-04-14 by SAE International in United States
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need for CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of the base components. Among them, a wet clutch actuator continues to play a critical role in the next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few contributions to the literature that describe the effects of seals on clutch actuator behaviors. In a routine simulation, a spring constant is commonly tuned to match vehicle data, assuming that it captures the effects of seal friction. The validity of this approach is not well established. This article describes the characterization…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Gasket, Metal C-Ring Seal Nickel Alloy, Corrosion and Heat Resistant, Metric Procurement Specification For

E-25 General Standards for Aerospace and Propulsion Systems
  • Aerospace Standard
  • MA2538
  • Current
Published 2020-04-06 by SAE International in United States
This procurement specification covers aircraft quality metallic gaskets having a "C" shape cross-section to form a seal ring, made from a corrosion and heat resistant age hardenable nickel base alloy of the type identified under the Unified Numbering System as N07750.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Hardness Testing of Elastomeric O-Rings

AMS CE Elastomers Committee
  • Aerospace Standard
  • AIR4738B
  • Current
Published 2020-04-03 by SAE International in United States

This SAE Aerospace Information Report (AIR) provides a general description of methods for hardness testing of O-rings including factors which affect precision and comparison of results with those obtained in standard tests.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

CONNECTOR, PLUG, ELECTRIC, STRAIGHT, SOLDER CONTACTS, AN TYPE

AE-8C1 Connectors Committee
  • Aerospace Standard
  • AS31061C
  • Current
Published 2020-03-24 by SAE International in United States
No Abstract Available.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Fittings, 37 Degree Internal Flare, Fluid Connection, Procurement Specification

G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
  • Aerospace Standard
  • AS4841C
  • Current
Published 2020-03-10 by SAE International in United States
This SAE Aerospace Standard (AS) establishes the requirements for 37 degree flared tube fittings or machined internal cone fluid connection fittings for use with 37 degree external cone, spherical nose, and seal ring fittings in all types of aerospace fluid systems (see Section 6).
This content contains downloadable datasets
Annotation ability available