Your Selections

Roads and highways
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Development of Emergency Vehicle Approaching Alert System (EVAAS)

International Centre For Automotive Tech.-Bhavna Bhavna
  • Technical Paper
  • 2019-28-2465
To be published on 2019-11-21 by SAE International in United States
This paper discusses the need for Emergency Vehicle Approaching Alert System (EVAAS) and building of EVAAS components for OTT (over- the-top content), and Media providers. According to a study by the Indian Journal of Surgery in 2006, 80 per cent of road accident victims in India do not receive any emergency medical care (Ambulance) within this ‘golden hour - the first hour after a traumatic injury, when emergency treatment is most likely to be successful.’ Due to increasing population and constructions of Roads and Buildings, Emergency Vehicles are not able to reach the desired location. Hence, there is a need of an Emergency Vehicle Approaching Alert System (EVAAS) in INDIA.
 

Effect of variable payload on Vehicle dynamics of Passenger buses in Indian usage conditions

VE Commercial Vehicle-Abhishek pyasi
VE Commercial Vehicles, Ltd.-ABHOY CHANDRA
  • Technical Paper
  • 2019-28-2411
To be published on 2019-11-21 by SAE International in United States
A high impetus from Government on road infrastructure development, is giving a fillip to passenger CV space. This has resulted in making the passenger CV segment lucrative enough, thereby pulling in many operators in the business. The quality of road has immensely improved over a decade, as a result of which the average speed and hence the quantum of distance covered by passenger buses has increased significantly. People are preferring to travel in buses over trains, owing to at par ticket cost, high availability, reduced travel time and also improved level of comfort. Aligned to the market need and the trend, OEM's are offering buses with capable powertrains to cater the need of speed, reduced trip time as well as a lot of attention is also being paid to tune in the comfort level for long hauls. A big chunk of passenger travel is catered by the bus operators especially during major festivals in India. However, the passenger demand is not so consistent in this industry due to seasonality and hence is the operator earnings,…
 

DEVELOPMENT OF SMART BIKE FOR RIDER’S SAFETY THROUGH HELMET DETECTION

International Centre For Automotive Tech.-Prateek Goel
  • Technical Paper
  • 2019-28-2458
To be published on 2019-11-21 by SAE International in United States
In today’s era, especially in young generation, the craze of motor bikes is really remarkable. As the bikers in our country are increasing, the road mishaps are also increasing day-by-day, due to which many deaths occur and most of them are caused by the negligence in wearing helmet. According to the Ministry of Road Transport and Highways, 1,50,785 people were killed in 4,80,652 road crashes in India in 2016. This translates into 55 crashes and 17 deaths every hour. In case of road crash deaths, Two-Wheeler topped the list with a percentage share of 29.42% followed by Trucks, Tempos, Tractors(25.9%) and Cars, Jeeps, Taxis (21.61%). In order to overcome the above mentioned problem, we are designing an intelligent system that detects the helmet and prevent the rider to ride the bike without wearing helmet which helps to reduce the death cases during an accident. Our task as an automobile engineer was to design a smart helmet that could automatically detected by the two-wheeler. A camera was installed near the speedometer (on the handle bar) of…
 

Enhanced Road condition monitoring for developing countries

STMicroelectronics-Saurabh Rawat, Prashant Pandey
  • Technical Paper
  • 2019-28-2462
To be published on 2019-11-21 by SAE International in United States
"According to Data on Road accidents in India by Transport Research Wing of Ministry of Road Transport & Highways, more than 4 Lakhs road accidents happened every year from year 2003 to 2017. Poor road conditions and badly designed roads are the common cause of road accidents besides the driver's negligence. Poor roads and badly designed speed breakers are common in developing countries. Apart from accidents, poor road conditions can cause excessive fuel consumption & damage to vehicles. Road condition monitoring solutions aim to warn the drivers of upcoming bad patch on the road and optionally report road conditions to authorities. There are multiple existing solutions that use motion sensors and GPS to detect a bad patch on the road. The presented solution builds over capability of existing solutions by adding useful features making it more practical and useful. The presented scheme is able to differentiate between a pothole and a speed breaker using a machine learning based approach. It also employs additional sensors like gyroscope and optionally a camera to detect on which side…
 

Estimating drive cycle for E-rickshaws using real world operating scenarios and for overall powertrain improvements.

Ola Electric Mobility Pvt. Ltd.-Nishit Jain, Smit Gupta
  • Technical Paper
  • 2019-28-2497
To be published on 2019-11-21 by SAE International in United States
E-Rickshaws are popular and convenient mode of transportation for last mile connectivity and are typically used for short distance(<10Km) commute. As per recent reports there are more than 1.5million e-rickshaws plying on Indian roads and approx. 10,000 vehicles are adding every month. Owners of these vehicles are inclined towards the overall range these vehicles can give on a single charge. Range can be improved by using efficient powertrain. Range can also be improved by optimized Battery Management systems and Controllers. Though there are certain evaluation criteria (such as curtailed Indian Drive Cycles) which can be used for efficiency estimations, manufactures are more interested in extending the range in real world scenarios. Hence, availability of real-world drive cycle is imperative. Through this paper, we have attempted to derive a typical drive cycle by collecting road data of various types of e-Rickshaws under different environment conditions. The paper also attempted to present how these derived drive cycle can thus help in powertrain optimization and overall efficiency improvements.
 

Methodology for failure simulation Using 4 corner 6 DOF Road load simulator of Overhanging Components: An Experimental Approach

Maruti Suzuki India Ltd-Naveen Malik, Sahil Jindal, Sayed Zergham Ali Naqvi
Maruti Suzuki India, Ltd.-Ayan Bhattacharya
  • Technical Paper
  • 2019-28-2404
To be published on 2019-11-21 by SAE International in United States
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper, an experimental approach was applied for focused failure simulation of engine mount, one of such low correlation zone, with known history of failure. Methodology was established to simulate proving ground loads on engine mount along with simulation of loads at wheel center using a 4 corner 6 DOF road load simulator. Result was verified by endurance run on test rig and matching the nature…
 

Correlation of Objective and Subjective test results for Ride comfort with Heave, Pitch and Roll motion for a Passenger Vehicle

Advanced Structures India-Anuj Jha, Rahul Ramola
Vellore Institute of Technology-Aniruddha Deouskar
  • Technical Paper
  • 2019-28-2410
To be published on 2019-11-21 by SAE International in United States
Research Objective The importance of evaluating ride comfort with high degrees of accuracy objectively and its correlation with subjective perception is increasing day by day because of the long duration of the driving experience. The complex motion of the vehicle which is the combination of heave, roll and pitch motion is responsible for causing extreme uneasiness to the driver as well as the passenger. In this paper, ride comfort evaluation is done on the highway with similar traffic conditions with the help of Vibration Dose Value Analysis, Suspension Working Space and Ride Diagram methods for two hatchbacks and its correlation with the complex motion like choppiness of the vehicle is established that will help us to enhance the driver ride experience. Methodology The ride testing is performed for two hatchbacks on a highway road with different kinds of terrain ranging from highly uneven road roughness to moderately smooth surface for a speed range of 60-100 kmph. The road environment is chosen for testing in order to record and analyze the most practical vehicle response to…
 

Autonomous Car in India

Maruti Suzuki India, Ltd.-Siddharth Agnihotri
  • Technical Paper
  • 2019-28-2522
To be published on 2019-11-21 by SAE International in United States
Automation is expanding in every possible direction and it was only time before it reached the Automobile sector. There has been tremendous traction towards autonomous cars since last 2-3 yrs as a probable solution to reduce accidents and promote safe and comfortable commute. Many companies have expressed their interest in developing some part(s) of it and when would all of this culminate resulting in a fully autonomous car. But as every coin has two aspects so same does automation. This paper covers the future of autonomous cars from Indian perspective, covering possible challenges, complex use cases, advantages, technology enablers, economy outlook etc. India has the dubious honor of ranking first in road deaths in the world at present & accounts for 10 percent of global road accidents with more than 1.46 lakh fatalities annually. Major automotive and tech companies in world are moving towards Autonomous technology for vehicles to make roads safer and reduce the no. of deaths due to road accident. Many companies have already started testing their vehicle on roads, created separate verticals…
 

A Self-Intelligent Traffic Light Control System based on Traffic Environment using Machine Learning

Maharaja Agrasen Inst. Of Technology-Shubham Upadhyaya
Maharaja Agrasen institute of technology-Ananya Bansal
  • Technical Paper
  • 2019-28-2459
To be published on 2019-11-21 by SAE International in United States
In this paper, we will detect and track vehicles on a video stream and count those going through a defined line and to ultimately give an idea of what the real-time on street situation is across the road network. Our major objective is to optimize the delay in transit of vehicles in odd hours of the day. It uses YOLO object detection technique to detect objects on each of the video frames And SORT (Simple Online and Realtime Tracking algorithm) to track those objects over different frames. Once the objects are detected and tracked over different frames a simple mathematical calculation is applied to count the intersections between the vehicles previous and current frame positions with a defined line. At present, the traffic control systems in India, lack intelligence and act as an open-loop control system, with no feedback or sensing network. Present technologies use Inductive loops and sensors to detect the number of vehicles passing by. This is a very inefficient and expensive way to make traffic lights adaptive. Using a simple CCTV camera…
 

Damage matching criterion for development of accelerated duty cycle from road load data, and achieving right duty cycle to determine gear and bearing durability.

Romax Solutions-Amol Korde
  • Technical Paper
  • 2019-28-0121
To be published on 2019-10-11 by SAE International in United States
While designing the transmission, designer needs to have a duty cycle which is a set of load cases against which he wants to confirm the durability of the same. This is done through data acquisition by running a vehicle on various terrains and converting those data points to a concise set of load cases which we term as duty cycle. This is required because data acquired has millions of data points giving value of torque and RPM at every millisecond which cannot be directly used to assess the fatigue durability of gears and bearings. Converting these millions of road load data points into fewer number of load cases is always a challenge. For a transmission designer, it is being a major hurdle to determine as what is the scientific way of converting these millions of data points into a concise duty cycle. The road load data is taken for few hundred or few thousand kilometres covering enough types of terrains on which vehicle is expected to run. But the methods available with todays engineers does…