Your Selections

Reliability
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Determine Thermal Fatigue Requirements for PEPS Antenna Copper Wire over Vehicle Lifetime with defined Reliability Requirements.

GMTCI-Abhinav Jauhri
  • Technical Paper
  • 2019-28-2582
To be published on 2019-11-21 by SAE International in United States
Reliability states the degree to which the result of a measurement, calculation, or specification can be depended on to be accurate. And, tests according to GMW specifications represents a minimum of 15 years of vehicle life time with defined Reliability and Confidence level. In this work, actual number of thermal cycles for Thermal Fatigue tests (Thermal Shock and Power Temperature Cycle) are calculated for Copper Wire whose Coffin Manson exponent is 5. Overstressing the PEPS Antenna under thermal fatigue requirement (defined number of thermal cycles based on Reliability and Confidence requirements) will lead to broken Copper wire which will result in component’s functional failure and thus impossible to continue reliability testing. The objective of this paper is to determine thermal fatigue requirements for Antenna’s Copper wire whose Coffin Manson exponent is 5. Testing with exact number of thermal cycles will reduce the validation failures owing to broken Copper wire and thus save incurred revalidation cost. The current study is limited to only adjusting the thermal fatigue requirements (Number of Thermal Cycles) for only specific E/E…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Vision Based Surface Roughness Characterization of Flat Surfaces Machined with EDM

BSA Crescent Institute of Science & Technology-Mahashar Ali, Siddhi Jailani, Mangalnath Anandan, Vignesh Pavithran
Vellore Institute of Technology-Murugan Mariappan
  • Technical Paper
  • 2019-28-0148
To be published on 2019-10-11 by SAE International in United States
Surface roughness measurement is an important one in any manufacturing next to dimensions. In this investigation, a vision system and image processing tools were used to develop reliable surface roughness characterization technique for Electrical Discharge Machined surfaces. A CMOS camera with red LED light source were used for capturing images of EDMed surfaces. A separate signal vector generated for all the images from its image pixel intensity matrices. The mean, skewness and kurtosis were obtained from the signal vector. The mean, skewness and kurtosis of the images signal vector correlates very well with the stylus measured hybrid roughness parameters Rda and Rdq. Hence the technique may be preferred for online surface roughness characterization of Electrical Discharge Machined (EDMed) surfaces.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analytical Model for Calibration Results Performances Enhancement, Resulting in Automated Prescription for Equipments

Airbus-Juan Manuel García Lasanta, Damian Mendez-Huelva
SAICA SL-Jose Enrique Garofano
  • Technical Paper
  • 2019-01-1878
Published 2019-09-16 by SAE International in United States
Most of the decisions taken every day are based on the results of measurements of all different events that occur around us. The reliability of these measurements depends basically on the environment in which they are carried out, the procedure defined and the equipment used, evaluating their different contributions through the uncertainty of measurement. In the case of the measuring equipment, the calibration process associated with adequate traceability provides part of the information necessary to contribute positively to the generation of reliability. However, the physical nature of the instruments means that all of them have a certain degree of drift in their metrological characteristics, which requires users to establish time intervals to confirm the maintenance of the goodness of measurement of such equipment. In this article, a methodological proposal for the processing of calibration data, which makes it possible to establish a systematic approach for the dynamic and flexible establishment of calibration intervals for measuring equipment in industrial environments, is introduced. Finally, the results of a practical experience with this methodology carried out in the…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

EDITORIAL: There is no substitute for ‘Automotive Grade’

Automotive Engineering: September 2019

Editor-in-Chief-Lindsay Brooke
  • Magazine Article
  • 19AUTP09_05
Published 2019-09-01 by SAE International in United States

When you get in a vehicle and push the ‘start’ button, you're betting that the machine will get you to your destination safely and reliably, regardless of the driving conditions. Lives are at stake the moment you lift off the brake pedal.

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Operational Considerations for High-Reliability Interconnects in Military and Aerospace Applications

Aerospace & Defense Technology: September 2019

  • Magazine Article
  • 19AERP09_02
Published 2019-09-01 by SAE International in United States

In the recent past, military acquisition has shifted from being locked into large long-term contracts to developing complex systems in discrete increments that can be further optimized in future design cycles. These shorter design cycles allow for equipment to be deployed more rapidly, thereby mitigating the risk of subsystems going obsolete as increasing proportions of budget dollars go towards operation and support (O&S). This transition to evolutionary acquisition (EA) leaves a major opportunity for vendors to develop commercial off-the-shelf (COTS) components that are military-compliant.

Annotation ability available

Technology Produces Unclonable Digital Fingerprints for Internet of Things Devices

  • Magazine Article
  • TBMG-34932
Published 2019-08-01 by Tech Briefs Media Group in United States

Researchers have created technology that is 10 times more reliable than current methods of producing unclonable digital fingerprints that can be used to authenticate devices linked to the Internet of Things (IoT).

Microturbine Propulsion for UAVs

  • Magazine Article
  • TBMG-34863
Published 2019-08-01 by Tech Briefs Media Group in United States

Seventy years ago, military aviation moved from reciprocating engines to vastly more reliable turbo jets and turboprops. Shortly after, the commercial air transport industry followed suit, enabling modern air transport. Today, virtually all large aircraft rely on turbine propulsion, yet small aircraft, both manned and unmanned, have not exploited the advantages of turbines for propulsion.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Microturbine Propulsion for UAVs

Aerospace & Defense Technology: August 2019

  • Magazine Article
  • 19AERP08_03
Published 2019-08-01 by SAE International in United States

Seventy years ago, military aviation moved from reciprocating engines to vastly more reliable turbo jets and turboprops. Shortly after, the commercial air transport industry followed suit, enabling modern air transport. Today, virtually all large aircraft rely on turbine propulsion, yet small aircraft, both manned and unmanned, have not exploited the advantages of turbines for propulsion.

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Critical Communications Break Out of the Analog Mold

Aerospace & Defense Technology: August 2019

  • Magazine Article
  • 19AERP08_05
Published 2019-08-01 by SAE International in United States

Military and public safety communications increase digital and data capabilities without sacrificing reliability or interoperability.

Once firmly rooted in its analog origins, critical communications is now steadily evolving to provide enhanced situational awareness. The latest public safety and military communications (MilCom) radios are more versatile and reliable, supporting ad-hoc networks to improve or enable connectivity. With higher-data-rate capabilities, critical communications solutions can send and receive high-resolution images, videos, and other types of data-intensive content. At the same time, they provide higher-quality voice communications while maintaining security. To ensure communications and interoperability, they still can support analog communications as a failsafe. These myriad capabilities are possible through the ongoing adoption of new technologies, ranging from digital public safety standards and modulation formats, to technologies like wireless local area networking (WLAN) and Long Term Evolution (LTE).

Annotation ability available

Peridynamic Modeling: An Alternative Approach to Analyzing Material Failure

  • Magazine Article
  • TBMG-34871
Published 2019-08-01 by Tech Briefs Media Group in United States

A critical technology challenge for structural material applications in the aerospace and defense industries is to have a means for the reliable analysis of material damage and failure. Experimental structural assessments are typically expensive and often do not provide full information about coupled, multiscale damage processes. Computer-aided analysis has established itself as a useful tool for complementing experimental structural assessments. A comparative summary of current computer-aided approaches is presented in the accompanying table.