Your Selections

Landing gear
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Landing Gear Fatigue Spectrum Development For Part 25 Aircraft

A-5B Gears, Struts and Couplings Committee
  • Aerospace Standard
  • AIR5914
  • Current
Published 2020-02-28 by SAE International in United States
This SAE Aerospace Information Report (AIR) provides guidelines for the development of landing gear fatigue spectra for the purpose of designing and certification testing of Part 25 landing gear. Many of the recommendations herein are generalizations based on data obtained from a wide range of landing gears. The aircraft manufacturer or the landing gear supplier is encouraged to use data more specific to their particular undercarriage whenever possible.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Contiguous Aircraft/System Development Process Example

S-18 Aircraft and Sys Dev and Safety Assessment Committee
  • Aerospace Standard
  • AIR6110
  • Current
Published 2020-02-05 by SAE International in United States
This AIR provides a detailed example of the aircraft and systems development for a function of a hypothetical S18 aircraft. In order to present a clear picture, an aircraft function was broken down into a single system. A function was chosen which had sufficient complexity to allow use of all the methodologies, yet was simple enough to present a clear picture of the flow through the process. This function/system was analyzed using the methods and tools described in ARP4754A/ED-79A. The aircraft level function is “Decelerate Aircraft On Ground” and the system is the braking system. The interaction of the braking system functions with the aircraft are identified with the relative importance based on implied aircraft interactions and system availabilities at the aircraft level. This example does not include validation and verification of the aircraft level hazards and interactions with the braking system. However, the principles used at the braking system level can be applied at the higher aircraft level. The methodologies applied here are an example of one way to utilize the principles defined in…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Conceptual Design, Material, and Structural Optimization of a Naval Fighter Nose Landing Gear for the Estimated Static Loads

SAE International Journal of Aerospace

Anna University Chennai - Regional Office Tiruchirappalli, India-Swagata Paul, K. Suresh
Senior Grade Assistant Professor, India-C. Senthilkumar
  • Journal Article
  • 01-12-02-0009
Published 2019-12-13 by SAE International in United States
The Naval Nose Landing Gear (NLG) structural assembly consists of components with complex structural geometry and critical functionalities. The landing gear components are subjected to high static and dynamic loads, so they must be appropriately designed, dimensioned, and made by materials with mechanical characteristics that meet high strength, stiffness, and less weight requirements. This article contributes to the shape, size, and material optimization for the NLG of a supersonic naval aircraft for the estimated static loads. The estimated modal frequency values of the NLG assembly using Finite Element Analysis (FEA) software were compared with available Ground Vibration Test data of an aircraft to literally prove the accuracy and suitability of finite element (FE) model that can be used for any further analysis. Static structural analysis was performed for the critical landing load cases, and the Reserve Factor (RF) values of the landing gear components were calculated to determine their static strength capacity. Iterations including shape, size, and material optimization were done in the NLG to reduce the mass with the required strength characteristics.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Guidelines for Writing IVHM Requirements for Aerospace Systems

HM-1 Integrated Vehicle Health Management Committee
  • Aerospace Standard
  • ARP6883
  • Current
Published 2019-12-03 by SAE International in United States
This Aerospace Recommended Practice (ARP) provides guidance on developing requirements for systems that include Integrated Vehicle Health Management (IVHM) capability [REF1], [REF18]. IVHM is increasingly being implemented on military and commercial aircraft. Some examples include the F-35 Joint Strike Fighter (JSF) [REF1] and the AH-64 Apache [REF3] in the military domain, and the B787 [REF4] and A350XWB [REF5] in the commercial domain. This document provides a systematic approach for developing requirements related to the IVHM capabilities of a vehicle system. This document is not intended to repeat general guidelines on good requirements writing [REF13], [REF20]. Instead, the focus is on the unique elements, which need to be considered for IVHM and the resulting specific guidelines that will help define better requirements and hence better systems. The multi-faceted nature of IVHM should include the process of requirements gathering. Therefore, this document presents some guidance on how to go about this task. The document also includes some case studies that illustrate, in a practical manner, what a good set of IVHM requirements might look like. These have…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Information on Brake-By-Wire (BBW) Brake Control Systems

A-5A Wheels, Brakes and Skid Controls Committee
  • Aerospace Standard
  • AIR5372A
  • Current
Published 2019-10-25 by SAE International in United States
This SAE Aerospace Information Report (AIR) describes the design approaches used for current applications of aircraft Brake-by-Wire (BBW) control systems. The document also discusses the experience gained during service, and covers system, ergonomic, hardware, and development aspects. The document includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on the current state of the art systems.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Tire Burst Test Methodology

A-5C Aircraft Tires Committee
  • Aerospace Standard
  • ARP6265
  • Current
Published 2019-10-17 by SAE International in United States
This document describes a recommended test procedure to assess the burst characteristics of tires used on 14CFR Part 25 or similar transport airplanes.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Landing Gear Integration into Aircraft Structure in Early Design Stage

Bauhaus Luftfahrt EV-Ulrich Kling, Mirko Hornung
Published 2019-09-16 by SAE International in United States
The demanded development towards various emission reduction goals set up by several institutions forces the aerospace industry to think about new technologies and alternative aircraft configurations. With these alternative aircraft concepts, the landing gear layout is also affected. Turbofan engines with very high bypass ratios could increase the diameter of the nacelles extensively. In this case, mounting the engines above the wing could be a possible arrangement to avoid an exceedingly long landing gear. Thus, the landing gear could be shortened and eventually mounted at the fuselage instead of the wings. Other technologies such as high aspect ratio wings have an influence on the landing gear integration as well. To assess the difference, especially in weight, between the conventional landing gear configuration and alternative layouts a method is developed based on preliminary structural designs of the different aircraft components, namely landing gear, wing and fuselage. Simplified parametric finite element structural models for the different components are introduced. These models are used to investigate different aircraft configurations with special regard on the landing gear integration. The…
This content contains downloadable datasets
Annotation ability available

Origami-Inspired Material Softens Impact Forces

  • Magazine Article
  • TBMG-35127
Published 2019-09-01 by Tech Briefs Media Group in United States

Landing is stressful on a rocket’s legs because they must handle the force from the impact with the landing pad. One way to combat this is to build legs out of materials that absorb some of the force and soften the blow. Inspired by the paper-folding art of origami, researchers created a paper model of a metamaterial that uses “folding creases” to soften impact forces and instead promote forces that relax stresses in the chain.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aircraft Ground Deicing/Anti-Icing Processes

G-12M Methods Committee
  • Aerospace Standard
  • AS6285C
  • Current
Published 2019-08-20 by SAE International in United States
This document establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Types II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturer's recommendations.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

A-5A Wheels, Brakes and Skid Controls Committee
  • Aerospace Standard
  • ARP1070E
  • Current
Published 2019-07-22 by SAE International in United States
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control and performance. It focuses on recommended practices specific to antiskid and its integration with the aircraft, as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2 for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1 ARP4754 2 ARP4761 3 RTCA DO-178 4 RTCA DO-254 5 RTCA DO-160 6 ARP490 7 ARP1383 8 ARP1598 In addition, it covers design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, as well as methods of determining and evaluating antiskid system performance. For definitions of terms used herein, see Section 7.
This content contains downloadable datasets
Annotation ability available