Your Selections

Winter, Amos
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigating the Effect of Intake Manifold Size on the Transient Response of Single Cylinder Turbocharged Engines

Massachusetts Institute of Technology-Michael R. Buchman, Amos Winter
Published 2017-09-04 by SAE International in United States
This paper evaluates the lag time in a turbocharged single cylinder engine in order to determine its viability in transient applications. The overall goal of this research is to increase the power output, reduce the fuel economy, and improve emissions of single cylinder engines through turbocharging. Due to the timing mismatch between the exhaust stroke, when the turbocharger is powered, and the intake stroke, when the engine intakes air, turbocharging is not conventionally used in commercial single cylinder engines. Our previous work has shown that it is possible to turbocharge a four stroke, single cylinder, internal combustion engine using an air capacitor, a large volume intake manifold in between the turbocharger compressor and engine intake. The air capacitor stores compressed air from the turbocharger during the exhaust stroke and delivers it during the intake stroke. This work builds on previous theoretical and experimental work that shows that a turbocharger could be fitted to a single cylinder engine using an air capacitor to increase intake air density by 43% and peak power output by 29%.Our previous…
Annotation ability available