Your Selections

Teixeira, Odelma
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Hypersonic Flow Simulation towards Space Propulsion Geometries

Universidade Da Beira Interior-Odelma Teixeira, Jose Pascoa
Published 2019-09-16 by SAE International in United States
This work aims to expand the applicability of an open-source numerical tool to solve hypersonic gas dynamic flows for space propulsion geometries. This is done by validating the code using two well-known hypersonic test cases, the double cone and the hollow cylinder flare, used by the NATO Research and Technology Organization for the validation of hypersonic flight for laminar viscous-inviscid interactions (D. Knight, “RTO WG 10 - Test cases for CFD validation of hypersonic flight,” in 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002). The Computational Fluid Dynamic (CFD) simulation is conducted using the two-temperature solver hy2Foam that is capable to study external aerodynamics in re-entry flows. In the present work the assessment of hy2Foam to solve hypersonic complex flow features with strong interactions including non-equilibrium effects was demonstrated. Freestream conditions with stagnation enthalpy of 5.44 MJ/kg and Mach number of 12.2, for the double cone case, and stagnation enthalpy of 5.07 MJ/kg and Mach number of 11.3 for the hollow cylinder case were considered. Comparison with newer existing numerical data and experimental data from…
This content contains downloadable datasets
Annotation ability available