Your Selections

Khanna, Nitin Kumar
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Systematic Work Flow for Fatigue Life Prediction of Automotive Components

Mahindra & Mahindra, Ltd.-Nitin Kumar Khanna, Baskar Anthonysamy, Krishna Shettipally, Manohar Kalal
  • Technical Paper
  • 2019-28-0021
To be published on 2019-10-11 by SAE International in United States
Fatigue life estimation of automotive components is a critical requirement for product design and development. Automotive companies are under tremendous pressure to launch new vehicles within short duration because of customer’s changing preferences. There is a necessity to have a comprehensive virtual simulation and robust validation process to evaluate durability of vehicle as per customer usage. Test track and field test are two of the most time-consuming activities, so there is a need of simulation process to substitute these requirements. This paper summarizes the overall process of Accelerated Durability Test with measured road loads. Based on category of vehicle, type road profiles and the customer usage pattern, the wheel forces, strains and acceleration are measured which is used to derive the equivalent duty cycles on proving ground. The wheel force transducers (WFT) are used to derive loads for fatigue life estimation. A full vehicle model is prepared in ADAMS CAR and validated through Physical testing. The loads on suspension hard points extracted from the validated MBD model. These loads at various hardpoint locations, are used…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Methodology to Determine Toe Geometry of any Vehicle at Its Early Design Stage for Optimum Tyre Life

Mahindra & Mahindra, Ltd.-Nitin Kumar Khanna, Karthik Senthi, Vignesh Natarajan
  • Technical Paper
  • 2019-28-0105
To be published on 2019-10-11 by SAE International in United States
Toe setting is one of the major wheel alignment parameters which directly effects handling of a vehicle. Correct toe setting ensures desired dynamic behavior of an automobile like straight line stability, cornering behavior, handling and tire durability. Incorrect setting of toe during design stage significantly deteriorates tire durability and leads to uneven tire wear. In the present scenario of automotive industry, toe setting is majorly an iterative or a trial and error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Therefore, determining optimum toe setting at an early stage of a product development will not only save significant development time but it will also benefit in reducing product validation time and cost. Through this paper an attempt has been made to develop a methodology for deciding toe setting for any vehicle as a first time right approach to cut down on conventional expensive & time consuming iterative approach. In this new methodology…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Develop the Methodology Using DOE Approach to Improve Steering Return Ability of a Vehicle through Virtual Simulation

Mahindra & Mahindra, Ltd.-Nitin Kumar Khanna, Baskar Anthonysamy, Naveen Medithi, Karthik Senthi
  • Technical Paper
  • 2019-28-0012
To be published on 2019-10-11 by SAE International in United States
In driving, Steering is the input motion to the vehicle. The driver uses steering input to change the direction of the vehicle. During Parking or U turn bends the Steering is locked and later released to follow the desired path. Steering return ability is defined as the ratio of difference between steering wheel position at lock condition and steering wheel angle after 3 seconds of release to the steering wheel angle at lock condition. Having proper steering return ability characteristics has an important effect on vehicle steering characteristics. In this study, a full vehicle ADAMS model is prepared, and virtual steering return ability have been simulated in ADAMS/CAR for a Pickup truck vehicle. Simulated responses in the steering wheel angle have been validated by comparison with measurements. A Design of Experiment study is setup and Iterations are carried out to find the effect of Hard points and friction parameters. The effect of different parameters in terms of their importance is plotted and discussed. The objective is to establish the methodology to predict correct steering return…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Methodology to Determine Optimum Suspension Hard Points at an Early Design Stage for Achieving Steering Returnability in Any Vehicle

Mahindra & Mahindra, Ltd.-Nitin Kumar Khanna, Manjul Jyoti, Udhayakumar S, Karthik Senthi
Mahindra Research Valley-Sakharam Desai
Published 2019-01-09 by SAE International in United States
Steering returnability while driving is one of the most important parameter which affects the drive pleasure and handling of a vehicle. Steering returnability refers to the automatic returning response of the steering wheel after taking a full turn while vehicle is being steered during driving. Evaluating steering response characteristics of any vehicle in a virtual environment at early stage of a product development saves significant development time and cost. Through this paper an attempt has been made to develop a methodology for selection of suspension hard points which influences steering returnability characteristics of a vehicle at an early product design stage. Conventionally, suspension kinematic parameters such as Caster angle, Steering axis inclination (SAI), etc. are iterated during vehicle design stage to achieve desired Steering returnability. However, at times vehicle level trials indicate that increasing caster angle or SAI does not guarantee a desirable increase in steering returnability. In this new methodology a set of iterative trials are done to vary hard points (X, Y, Z co-ordinates) of Lower ball joint of an independent front suspension…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Methodology for Durability Evaluation of an Automotive Trailing Arm Damper Pin Using Road Load Spindle Acceleration

Mahindra and Mahindra, Ltd.-Sagar Polisetti, Siddesh Gowda, Nitin Kumar Khanna, Manjul Jyoti
Published 2016-04-05 by SAE International in United States
Suspension system is one of the most important systems in an automobile and the failure in the sub systems or parts would prove catastrophic. A semi-trailing arm (STA) suspension is an independent rear suspension system for automobiles where each wheel hub is located only by a large, roughly triangular arm that pivots at two points onto the chassis or the body. STA usually is subjected to three directional loads viz. vertical, longitudinal and lateral in service. The conventional methodology of validating the system is by applying multi-axial loads or by road load simulation consuming significant amount of time. In this paper an attempt is being made to validate the damper mounting pins by reproducing the damper loads locally instead of validating the entire system. STA was strain gauged at the critical locations and was mounted onto the vehicle. Accelerometer was mounted onto the wheel spindle and a displacement transducer (LVDT) was mounted parallel to the damper mounted to the body and the STA. The vehicle was run on the test tracks and the corresponding STA…
Annotation ability available