The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Kalogirou, Maria
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Calibration and Validation of a Diesel Oxidation Catalyst Model: from Synthetic Gas Testing to Driving Cycle Applications

SAE International Journal of Engines

Aristotle Univ. Thessaloniki-Grigorios Koltsakis, Zissis Samaras
Exothermia S.A.-Maria Kalogirou
  • Journal Article
  • 2011-01-1244
Published 2011-04-12 by SAE International in United States
To meet future stringent emission regulations such as Euro6, the design and control of diesel exhaust after-treatment systems will become more complex in order to ensure their optimum operation over time. Moreover, because of the strong pressure for CO₂ emissions reduction, the average exhaust temperature is expected to decrease, posing significant challenges on exhaust after-treatment. Diesel Oxidation Catalysts (DOCs) are already widely used to reduce CO and hydrocarbons (HC) from diesel engine emissions. In addition, DOC is also used to control the NO₂/NOx ratio and to generate the exothermic reactions necessary for the thermal regeneration of Diesel Particulate Filter (DPF) and NOx Storage and Reduction catalysts (NSR). The expected temperature decrease of diesel exhaust will adversely affect the CO and unburned hydrocarbons (UHC) conversion efficiency of the catalysts. Therefore, the development cost for the design and control of new DOCs is increasing. To select the best quality product at affordable price, the authors have evaluated exhaust simulation as an additional development tool.In this study, a multidimensional exhaust modeling tool based on physical background was used.…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Biodiesel Blends on Fuel Consumption and Emissions in Euro 4 Compliant Vehicles

SAE International Journal of Fuels and Lubricants

Aristotle Univ. of Thessaloniki-Zissis Samaras, Georgios Fontaras, Maria Kalogirou
BP Global Fuels Technology-Cassandra Higham
  • Journal Article
  • 2010-01-1484
Published 2010-05-05 by SAE International in United States
Fatty Acid Methyl Ester (FAME) products derived from vegetable oils and animal fats are now widely used in European diesel fuels and their use will increase in order to meet mandated targets for the use of renewable products in road fuels. As more FAME enters the diesel pool, understanding the impact of higher FAME levels on the performance and emissions of modern light-duty diesel vehicles is increasingly important. Of special significance to Well-to-Wheels (WTW) calculations is the potential impact that higher FAME levels may have on the vehicle's volumetric fuel consumption.The primary objective of this study was to generate statistically robust fuel consumption data on three light-duty diesel vehicles complying with Euro 4 emissions regulations. These vehicles were evaluated on a chassis dynamometer using four fuels: a hydrocarbon-only diesel fuel and three FAME/diesel fuel blends containing up to 50% v/v FAME. One FAME type, a Rapeseed Methyl Ester (RME), was used throughout. One vehicle was equipped only with an oxidation catalyst while the other two were also equipped with two types of Diesel Particulate Filters…
Annotation ability available