Your Selections

Jun, Tae Hwan
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Prediction and Validation of Unknown GISSMO Properties Using by Regression Analysis of Experimental Damage Tests

Hyundai Dymos Seat R&D Center-Tae Hwan Jun
Published 2019-03-25 by SAE International in United States
A seat, as one of the main automobile components is closely related to the passenger safety. It plays an important role on a protection of passengers from a sudden movement of a car and external front/rear/side crash. In order to achieve these purposes, strength, rigidity and durability of a seat have to be satisfied which are regulated by the law. Therefore, a prediction of the fracture time and the behavior of the seat structure by Finite Element analysis are very important. However, the fracture prediction method from axial tensile strength test has limits to present the behavior which is obtained in multiple loading cases. For this reason, a new analysis method for the fracture prediction considering multiple loading cases has to be established.In this research, the phenomenon of a seat fracture is implemented and the simulation is performed to predict the behavior using GISSMO Damage model in LS-DYNA. In order to find a fracture strain in a diverse stress mode, deformation tests of shear into a multiple direction, bi-axial tensile tests, notch impact test and…
Annotation ability available