The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Dyuisenakhmetov, Aibolat
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Isobaric Combustion at a Low Compression Ratio

King Abdullah University of Science & Technology-Aibolat Dyuisenakhmetov, Harsh Goyal, Moez Ben Houidi, Rafig Babayev, Bengt Johansson
Saudi Aramco-Jihad Badra
  • Technical Paper
  • 2020-01-0797
To be published on 2020-04-14 by SAE International in United States
In a previous study, it was shown that isobaric combustion cycle, achieved by multiple injection strategy, is more favorable than conventional diesel cycle for the double compression expansion engine (DCEE) concept. In spite of lower effective expansion ratio, the indicated efficiencies of isobaric cycles were approximately equal to those of a conventional diesel cycle. Isobaric cycles had lower heat transfer losses and higher exhaust losses which are advantageous for DCEE since additional exhaust energy can be converted into useful work in the expander. In this study, the performance of low-pressure isobaric combustion (IsoL) and high-pressure isobaric combustion (IsoH) in terms of gross indicated efficiency, energy flow distribution and engine-out emissions is compared to the conventional diesel combustion (CDC) but at a relatively lower compression ratio of 11.5. The experiments are conducted in a Volvo D13C500 single-cylinder heavy-duty engine using standard EU diesel fuel. The current study consists of two sets of experiments. In the first set, the effect of exhaust gas recirculation (EGR) is studied at different combustion modes using the same air-fuel ratio obtained…