Your Selections

Hella India Automotive Pvt Ltd.
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Development of Automotive Battery Management System

Hella India Automotive Pvt Ltd.-AK Prakash
Assistant Professor, COE, Pune-Meera Murali
  • Technical Paper
  • 2019-28-2498
Published 2019-11-21 by SAE International in United States
Battery operated vehicle needs accurate management system because of its quick changes in State of Charge (SoC) due to aggressive acceleration profiles and regenerative braking. Li-ion battery needs control over its operating area for the safe working. The main objective of the proposed system is to develop a BMS having algorithms to estimate accurate SoC, balance individual cells, thermal management, and provide safe area of operation defined by voltage and temperature. Proposed methodology uses Coulomb Counting as well as Model-based Design approach wherein nonlinear behavior of battery is modeled as Equivalent Circuit Model to compute the SoC and degradation effect on battery to decide the end of life of battery. Also performing Inductive Active Balancing on cells to equalize the charge. The study aims on deploying the model-based system on embedded platform which would help industry to reduce the model development time and focus on development of controlling algorithms for high end users. Active Balancing Architecture proposed here reduces the complexity of algorithm and at the same time decreases the balancing time.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Testing Electric Vehicle Sub-Systems Using Low Cost Programmable Electronic Load

Hella India Automotive Pvt Ltd.-Ameya V Gambhir, Nekzad Doctor
  • Technical Paper
  • 2019-28-2492
Published 2019-11-21 by SAE International in United States
The advancements in Electric Vehicles have introduced many complex sub-systems with demanding and sporadic power needs. For example, the current consumed by electric motor or bank of super-capacitors involve transients making them non-linear loads. Conventional test systems for load analysis mainly involved resistive loads where the rate of rise or fall of current was linear, falling short to accommodate the dynamic behavior of the Electric Vehicle loads. In this paper, we have proposed a low cost; yet effective electronic load that is independent of the battery voltage and can sink the current in any prescribed pattern with respect to time. The simulation results have shown the effectiveness of the hardware with respect to changes in temperature, aging and sudden input fluctuations. The implemented electronic load is interfaced to a desktop application to program the dynamic load behavior and the test duration. The same interface can act as data logger for long duration environmental and longevity tests. The indigenous system has proven quite useful for design validation tests and during End-of-Line testing of systems like DC-DC…
This content contains downloadable datasets
Annotation ability available