Terms:
SAE International Journal of Commercial Vehicles
AND
12
AND
4
The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Finite Element Modeling of an Energy-Absorbing Guardrail End Terminal

SAE International Journal of Commercial Vehicles

Insurance Institute for Highway Safety, USA-Wen Hu
Virginia Tech, USA-Yunzhu Meng, Costin Daniel Untaroiu
  • Journal Article
  • 02-12-04-0021
Published 2020-02-07 by SAE International in United States
Guardrail end terminals are specifically designed to decelerate vehicles during impact and protect vehicle occupants from severe injuries. The main objective of this research was to develop and validate a Finite Element (FE) model of the ET-Plus, a commonly used energy-absorbing guardrail end terminal. The ET-Plus FE model was created based on publicly available data on ET-Plus dimensions and material properties. The model was validated against the NCHRP-350 crash tests 27-30 and 31-30 by performing crash simulations with a vehicle model at 100 km/h (62 mph) pre-impact velocity. To check the model robustness, crash simulations with vehicle pre-impact velocities from 97 km/h (60 mph) to 113 km/h (70 mph) were also performed. The developed ET-Plus FE model has a high-quality mesh and can replicate the energy-absorbing mechanism. The time histories of the vehicle yaw angle predicted in the FE simulations of the two NCHRP 350 crash tests showed good agreement with the corresponding test data. Additionally, the model was stable in crash simulations with the investigated range of pre-impact velocities, and both post-impact velocities and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Technique of Estimating Particulate Matter Emission in Non-Road Engine Transient Cycle

SAE International Journal of Commercial Vehicles

Tafe Motors and Tractor Ltd., India-Ajay Nain
  • Journal Article
  • 02-12-04-0019
Published 2020-02-07 by SAE International in United States
Particulates are a major source of emission from diesel engine. They consist of particles of carbon, sulfates, oil, fuel, and water. These constituents are measured by filtering a sample diluted in a partial- or full-flow tunnel and weighing them. It is a general trend for measuring particulate matter (PM) on cycle basis. But 1-D simulation needs complete PM 3-D contour map considering all engine operating region. It is very tedious work for generating PM on each steady-state point on engine test bed. Hence, Filter smoke meter or opacimeter measurements can be used for estimating PM. Filter smoke meters measured the light reflected from a filter paper through which a known volume of exhaust gas was passed. Opacity meters measure light absorbed by a standard column of exhaust. Both equipments measure visible black smoke comparatively at lower expenditure cost. They are designed to control measurement noise, resolution and repeatability with acceptable accuracy level. Oil consumption and contribution of fuel sulfates are also considered in ISO 8178 R49, D2 and C1, India CEV Stage IIIA, India CPCB…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Material Selection and Structural Optimization for Lightweight Truck Trailer Design

SAE International Journal of Commercial Vehicles

RMIT University, Australia-Joel Galos
University of Cambridge, UK-Michael Sutcliffe
  • Journal Article
  • 02-12-04-0022
Published 2020-02-18 by SAE International in United States
This article investigates options for lightweighting truck trailers through a combination of material selection and structural optimization. Critical chassis design load cases were established and a parametric finite element (FE) model of a typical European-style 13.5 m long truck trailer built from steel I-beams was developed. The model has been used to show that existing longitudinal steel I-beams could be reduced in weight by 28% (140 kg) through shape optimization alone. The model was expanded to analyze holistic composite trailer structures. It showed that up to 67% (1,326 kg) of weight could be saved by executing shape and material optimization in unison. The approach highlights that design through parametric analysis allows for many different structural configurations to be assessed in terms of both mechanical performance and material cost. This facilitates the construction of a theoretical design space of a lightweight chassis, clarifying the weight reduction limits that could be achieved with lightweight materials and structural optimization. The lightweight trailer chassis designs proposed here are also compared against a portfolio of shorter-term strategies for trailer lightweighting.…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Implementation and Optimization of a Variable-Speed Coolant Pump in a Powertrain Cooling System

SAE International Journal of Commercial Vehicles

Navistar INC., USA-Michael C. Keblusek
Northern Illinois University, USA-Kyu Taek Cho
  • Journal Article
  • 02-12-04-0020
Published 2020-02-07 by SAE International in United States
This study investigates methods to precisely control a coolant pump in an internal combustion engine. The goal of this research is to minimize power consumption while still meeting optimal performance, reliability and durability requirements for an engine at all engine-operating conditions. This investigation achieves reduced fuel consumption, reduced emissions, and improved powertrain performance. Secondary impacts include cleaner air for the earth, reduced operating costs for the owner, and compliance with US regulatory requirements. The study utilizes mathematical modeling of the cooling system using heat transfer, pump laws, and boiling analysis to set limits to the cooling system and predict performance changes. The models are correlated with physical test data of one internal combustion engine, and a map is generated for allowable pump-speed reductions over all the conditions of engine speeds and torques, which provides insight into thermal behavior in the cooling loop and critical information to conduct optimal thermal design. It is found that speed-variable coolant pump could reduce the pump power up to 97%, and it could save the overall engine power consumption by…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Conceptualization and Modeling of a Flywheel-Based Regenerative Braking System for a Commercial Electric Bus

SAE International Journal of Commercial Vehicles

Delhi Technological University, India-Kunal Mathur, Lalit Kumar Choudhary, Aditya Manoj Natu, Krovvidi Srinivas, Vikas Rastogi
  • Journal Article
  • 02-12-04-0018
Published 2019-11-19 by SAE International in United States
The following article illustrates the detailed study of the development of a unique flywheel-based regenerative braking system (f-RBS) for achieving regenerative braking in a commercial electric bus. The f-RBS is designed for installation in the front wheels of the bus. The particular data values for modeling the bus are taken from multiple legitimate sources to illustrate the development strategy of the regenerative braking system. Mechanical components used in this system have either been carefully designed and analyzed for avoiding fatigue failure or their market selection strategies are are explained. The positioning of the entire system is decided using MSC Adams View®, hence determining a suitable component placement strategy such that the f-RBS components do not interfere with the bus components. The entire system is modeled on MATLAB Simulink® with sufficient accuracy to get various results that would infer the performance of the system as a whole. The overall efficiency of the developed system in terms of battery consumption is also computed in this study.
This content contains downloadable datasets
Annotation ability available