This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Real-Time Simulation of CNG Engine and After-Treatment System Cold Start. Part 1: Transient Engine-Out Emission Prediction Using a Stochastic Reactor Model
Technical Paper
2023-01-0183
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
During cold start of natural gas engines, increased methane and formaldehyde emissions can be released due to flame quenching on cold cylinder walls, misfiring and the catalyst not being fully active at low temperatures. Euro 6 legislation does not regulate methane and formaldehyde emissions. New limits for these two pollutants have been proposed by CLOVE consortium for Euro 7 scenarios. These proposals indicate tougher requirements for aftertreatment systems of natural gas engines.
In the present study, a zero-dimensional model for real-time engine-out emission prediction for transient engine cold start is presented. The model incorporates the stochastic reactor model for spark ignition engines and tabulated chemistry. The tabulated chemistry approach allows to account for the physical and chemical properties of natural gas fuels in detail by using a-priori generated laminar flame speed and combustion chemistry look-up tables. The turbulence-chemistry interaction within the combustion chamber is predicted using a K-k turbulence model. The optimum turbulence model parameters are trained by matching the experimental cylinder pressure and engine-out emissions of nine steady-state operating points.
Subsequently, the trained engine model is applied for predicting engine-out emissions of a WLTP passenger car engine cold start. The predicted engine-out emissions comprise nitrogen oxide, carbon monoxide, carbon dioxide, unburnt methane, formaldehyde, and hydrogen. The simulation results are validated by comparing to transient engine measurements at different ambient temperatures (-7°C, 0°C, 8°C and 20°C). Additionally, the sensitivity of engine-out emissions towards air-fuel-ratio (λ=1.0 and λ=1.3) and natural gas quality (H-Gas and L-Gas) is investigated.
Authors
- Reddy Babu Siddareddy - LOGE Polska Sp. z o.o.
- Tim Franken - BTU Cottbus-Senftenberg
- Michal Pasternak - LOGE Polska Sp. z o.o.
- Larisa Leon de Syniawa - Loge AB
- Johannes Oder - FEV Norddeutschland GmbH
- Hermann Rottengruber - Otto-Von-Guericke University Magdeburg
- Fabian Mauss - BTU Cottbus-Senftenberg
Topic
Citation
Siddareddy, R., Franken, T., Pasternak, M., Leon de Syniawa, L. et al., "Real-Time Simulation of CNG Engine and After-Treatment System Cold Start. Part 1: Transient Engine-Out Emission Prediction Using a Stochastic Reactor Model," SAE Technical Paper 2023-01-0183, 2023, https://doi.org/10.4271/2023-01-0183.Also In
References
- European Commission 2 n.d. https://Climate.Ec.Europa.Eu/Eu-Action/Transport-Emissions/Road-Transport-Reducing-Co2-Emissions-Vehicles/Co2-Emission-Performance-Standards-Cars-and-Vans_en
- 2021 https://Circabc.Europa.Eu/Faces/Jsp/Extension/Wai/Navigation/Container.Js
- Trapy , J.D. and Damiral , P. An Investigation of Lubricating System Warm-up for the Improvement of Cold Start Efficiency and Emissions of S.I Automotive Engines 1990 https://www.jstor.org/stable/44554104
- Zammit J.P. , Shayler P.J. , Pegg I. Thermal Coupling and Energy Flows between Coolant, Engine Structure and Lubricating Oil during Engine Warm Up, Institution of Mechanical Engineers - VTMS 10 Vehicle Thermal Management Systems Conference and Exhibition 2011 177 188 https://doi.org/10.1533/9780857095053.3.177
- Roberts , A. , Brooks , R. , and Shipway , P. Internal Combustion Engine Cold-Start Efficiency: A Review of the Problem, Causes and Potential Solutions Energy Convers Manag. 82 2014 327 350 https://doi.org/10.1016/j.enconman.2014.03.002
- Yusuf , A.A. and Inambao , F.L. Effect of Cold Start Emissions from Gasoline-Fueled Engines of Light-Duty Vehicles at Low and High Ambient Temperatures: Recent Trends Case Studies in Thermal Engineering 14 2019 100417 https://doi.org/10.1016/j.csite.2019.100417
- Borbon , A. , Gilman , J.B. , Kuster , W.C. , Grand , N. et al. Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: Observations versus emission inventories in Los Angeles and Paris J. Geophys. Res. Atmos. 118 n.d. 2041 2057 https://doi.org/10.1002/jgrd.50059
- Worton , D.R. , Isaacman , G. , Gentner , D.R. , Dallmann , T.R. et al. Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles Environ Sci Technol. 48 2014 3698 3706 https://doi.org/10.1021/es405375j
- Zhang , S. and McMahon , W. Particulate Emissions for LEV II Light-Duty Gasoline Direct Injection Vehicles SAE Int J Fuels Lubr. 5 2 2012 637 646 https://doi.org/10.4271/2012-01-0442
- Bahreini , R. , Xue , J. , Johnson , K. , Durbin , T. et al. Characterizing Emissions and Optical Properties of Particulate Matter from PFI and GDI Light-Duty Gasoline Vehicles J Aerosol Sci. 90 2015 144 153 https://doi.org/10.1016/J.JAEROSCI.2015.08.011
- Zimmerman , N. , Wang , J.M. , Jeong , C.H. , Ramos , M. et al. Field Measurements of Gasoline Direct Injection Emission Factors: Spatial and Seasonal Variability Environ Sci Technol. 50 2016 2035 2043 https://doi.org/10.1021/ACS.EST.5B04444/SUPPL_FILE/ES5B04444_SI_001.PDF
- Chen , L. , Liang , Z. , Zhang , X. , and Shuai , S. Characterizing Particulate Matter Emissions from GDI and PFI Vehicles under Transient and Cold Start Conditions Fuel 189 2017 131 140 https://doi.org/10.1016/J.FUEL.2016.10.055
- Mamakos , A. , Martini , G. , Marotta , A. , and Manfredi , U. Assessment of Different Technical Options in Reducing Particle Emissions from Gasoline Direct Injection Vehicles J Aerosol Sci. 63 2013 115 125 https://doi.org/10.1016/J.JAEROSCI.2013.05.004
- Liang , B. , Ge , Y. , Tan , J. , Han , X. et al. Comparison of PM Emissions from a Gasoline Direct Injected (GDI) Vehicle and a Port Fuel Injected (PFI) Vehicle Measured by Electrical Low Pressure Impactor (ELPI) with Two Fuels: Gasoline and M15 Methanol Gasoline J Aerosol Sci. 57 2013 22 31 https://doi.org/10.1016/J.JAEROSCI.2012.11.008
- Torkashvand , B. 2019
- Alzueta , M.U. and Glarborg , P. Formation and Destruction of CH2O in the Exhaust System of a Gas Engine Environ Sci Technol. 37 2003 4512 4516 https://doi.org/10.1021/es026144q
- Ko , J. , Son , J. , Myung , C.L. , and Park , S. Comparative Study on Low Ambient Temperature Regulated/Unregulated Emissions Characteristics of Idling Light-Duty Diesel Vehicles at Cold Start and Hot Restart Fuel 233 2018 620 631 https://doi.org/10.1016/j.fuel.2018.05.144
- Li , H. , Andrews , G.E. , and Savvidis , D. Influence of Cold Start and Ambient Temperatures on Greenhouse Gas (GHG) Emissions, Global Warming Potential (GWP) and Fuel Economy for SI Car Real World Driving International Journal of Fuels and Lubricants 3 2010 133 148 https://doi.org/10.2307/26272647
- Yamasaki , Y. , Ikemura , R. , Takahashi , M. , Shimizu , F. et al. Simple Combustion Model for a Diesel Engine with Multiple Fuel Injections International Journal of Engine Research 20 2019 167 180 https://doi.org/10.1177/1468087417742764
- Unver , B. , Koyuncuoglu , Y. , Gokasan , M. , and Bogosyan , S. Modeling and Validation of Turbocharged Diesel Engine Airpath and Combustion Systems International Journal of Automotive Technology 17 2016 13 34 https://doi.org/10.1007/s12239−016−0002−4
- Picerno , M. , Lee , S.Y. , Schaub , J. , Ehrly , M. et al. Co-Simulation of Multi-Domain Engine and Its Integrated Control for Transient Driving Cycles IFAC-PapersOnLine Elsevier B.V. 2020 13982 13987 https://doi.org/10.1016/j.ifacol.2020.12.917
- Riccio , A. , Monzani , F. , and Landi , M. Towards a Powerful Hardware-in-the-Loop System for Virtual Calibration of an Off-Road Diesel Engine Energies (Basel) 15 2022 https://doi.org/10.3390/en15020646
- Pasternak , M. , Mauss , F. , Klauer , C. , and Matrisciano , A. Diesel Engine Performance Mapping Using a Parametrized Mixing Time Model International Journal of Engine Research 19 2018 202 213 https://doi.org/10.1177/1468087417718115
- Pasternak , M. , Mauss , F. , Xavier , F. , Rieß , M. et al. 0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology SAE Technical Paper 2015-01-1243 2015 https://doi.org/10.4271/2015-01-1243
- Franken , T. , Netzer , C. , Mauss , F. , Pasternak , M. et al. Multi-Objective Optimization of Water Injection in Spark-Ignition Engines Using the Stochastic Reactor Model with Tabulated Chemistry International Journal of Engine Research 20 2019 1089 1100 https://doi.org/10.1177/1468087419857602
- Picerno , M. , Lee , S.Y. , Pasternak , M. , Siddareddy , R. et al. Real-Time Emission Prediction with Detailed Chemistry under Transient Conditions for Hardware-in-the-Loop Simulations Energies (Basel) 15 2022 https://doi.org/10.3390/en15010261
- Li , H. , Andrews , G.E. , Savvidis , D. , Daham , B. et al. Study of Thermal Characteristics and Emissions during Cold Start Using an on-Board Measuring Method for Modern SI Car Real World Urban Driving, Source SAE Int. J. Engines 1 1 2009 804 819 https://doi.org/10.2307/26308322
- Amini , M.R. , Shahbakhti , M. , and Ghaffari , A. A Novel Singular Perturbation Technique for Model-Based Control of Cold Start Hydrocarbon Emission SAE Int J Engines. 7 3 2014 1290 1301 https://doi.org/10.4271/2014-01-1547
- de Syniawa , L.L. , Siddareddy , R.B. , Oder , J. , Franken , T. et al. Real-Time Simulation of CNG Engine and After-Treatment System Cold Start. Part 2: Tail-Pipe Emissions Prediction Using a Detailed Chemistry Based MOC Model 2023 https://www.sae.org/publications/technical-papers/content/2023-01-0364/
- Franken , T. , Matrisciano , A. , Sari , R. , Fogué Robles , Á. et al. Modeling of Reactivity Controlled Compression Ignition Combustion Using a Stochastic Reactor Model Coupled with Detailed Chemistry SAE Technical Paper 2021-24-0014 2021 https://doi.org/10.4271/2021-24-0014
- Matrisciano , A. , Franken , T. , Gonzales Mestre , L.C. , Borg , A. et al. Development of a Computationally Efficient Tabulated Chemistry Solver for Internal Combustion Engine Optimization Using Stochastic Reactor Models Applied Sciences (Switzerland) 10 2020 1 31 https://doi.org/10.3390/app10248979
- Netzer , C. , Pasternak , M. , Seidel , L. , Ravet , F. et al. Computationally Efficient Prediction of Cycle-to-Cycle Variations in Spark-Ignition Engines International Journal of Engine Research 21 2020 649 663 https://doi.org/10.1177/1468087419856493
- Netzer , C. , Seidel , L. , Pasternak , M. , Klauer , C. et al. Engine Knock Prediction and Evaluation Based on Detonation Theory Using a Quasi-Dimensional Stochastic Reactor Model SAE Technical Paper 2017-01-0538 2017 https://doi.org/10.4271/2017-01-0538
- Matrisciano , A. , Pasternak , M. , Wang , X. , Antoshkiv , O. et al. On the Performance of Biodiesel Blends - Experimental Data and Simulations Using a Stochastic Fuel Test Bench SAE Technical Paper 2014-01-1115 2014 https://doi.org/10.4271/2014-01-1115
- Lai , J. , Parry , O. , Mosbach , S. , Bhave , A. et al. Evaluating Emissions in a Modern Compression Ignition Engine Using Multi-Dimensional PDF-Based Stochastic Simulations and Statistical Surrogate Generation SAE Technical Paper 2018-01-1739 2018 https://doi.org/10.4271/2018-01-1739
- Bjerkborn , S. , Frojd , K. , Perlman , C. , and Mauss , F. A Monte Carlo Based Turbulent Flame Propagation Model for Predictive SI In-Cylinder Engine Simulations Employing Detailed Chemistry for Accurate Knock Prediction SAE Int J Engines. 5 4 2012 1637 1647 https://doi.org/10.4271/2012-01-1680
- Curl , R.L. Dispersed Phase Mixing: I. Theory and Effects in Simple Reactors AIChE Journal 9 1963 175 181 https://doi.org/10.1002/aic.690090207
- Loge AB 2022
- Franken , T. , Mauss , F. , Seidel , L. , Gern , M.S. et al. Gasoline Engine Performance Simulation of Water Injection and Low-Pressure Exhaust Gas Recirculation Using Tabulated Chemistry International Journal of Engine Research 21 2020 1857 1877 https://doi.org/10.1177/1468087420933124
- Dulbecco , A. , Richard , S. , Laget , O. , and Aubret , P. Development of a Quasi-Dimensional K-k Turbulence Model for Direct Injection Spark Ignition (DISI) Engines Based on the Formal Reduction of a 3D CFD Approach SAE Technical Paper 2016-01-2229 2016 https://doi.org/10.4271/2016-01-2229
- Peters , N. Turbulent Combustion Cambridge University Press 2000 https://doi.org/10.1017/CBO9780511612701
- Shrestha , K.P. , Eckart , S. , Elbaz , A.M. , Giri , B.R. et al. A Comprehensive Kinetic Model for Dimethyl Ether and Dimethoxymethane Oxidation and NOx Interaction Utilizing Experimental Laminar Flame Speed Measurements at Elevated Pressure and Temperature Combust Flame 218 2020 57 74 https://doi.org/10.1016/J.COMBUSTFLAME.2020.04.016
- Lehtiniemi , H. , Mauss , F. , Balthasar , M. , and Magnusson , I. Modeling Diesel Spray Ignition Using Detailed Chemistry with a Progress Variable Approach Combustion Science and Technology 178 2006 1977 1997 https://doi.org/10.1080/00102200600793148
- Lehtiniemi , H. , Borg , A. , and Mauss , F. Combustion Modeling of Diesel Sprays SAE Int. J. Adv. & Curr. Prac. in Mobility 2 5 2016 2839 2858 https://doi.org/10.4271/2016-01-0592
- Matrisciano , A. Development of an Efficient Solver for Detailed Kinetics in Reactive Flows Research. Chalmers. Se. 2021 https://research.chalmers.se/en/publication/525272
- Oder , J. Verbrennungssteuerung eines CNG-DI-Motors mittels Hochlast-Abgasruckfuhrung Fakultat fur Maschinenbau Otto-von-Guericke-Universitat Magdeburg 2021 http://doi.org/10.25673/63005
- 2022 www.fvv-net.de
- Woschni , G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine SAE Technical Paper 670931 1967 https://doi.org/10.4271/670931
- Sentoff , K.M. , Robinson , M.K. , and Holmén , B.A. Second-by-Second Characterization of Cold-Start Gas-Phase and Air Toxic Emissions from a Light-Duty Vehicle Transp. Res Rec. 2010 95 104 https://doi.org/10.3141/2158-12
- Hu , J. , Frey , H.C. , and Boroujeni , B.Y. Contribution of Cold Starts to Real-World Trip Emissions for Light-Duty Gasoline Vehicles Atmosphere (Basel) 14 2022 35 https://doi.org/10.3390/atmos14010035
- Wang , S. , Ji , C. , Zhang , B. , and Liu , X. Lean Burn Performance of a Hydrogen-Blended Gasoline Engine at the Wide Open Throttle Condition Appl Energy 136 2014 43 50 https://doi.org/10.1016/J.APENERGY.2014.09.042
- Szwaja , S. , Jamrozik , A. , and Tutak , W. A Two-Stage Combustion System for Burning Lean Gasoline Mixtures in a Stationary Spark Ignited Engine Appl Energy 105 2013 271 281 https://doi.org/10.1016/J.APENERGY.2012.12.080