This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fuel Effects on Advanced Compression Ignition Load Limits

Journal Article
2021-01-1172
ISSN: 2641-9645, e-ISSN: 2641-9645
Published September 21, 2021 by SAE International in United States
Fuel Effects on Advanced Compression Ignition Load Limits
Sector:
Citation: Powell, T. and Szybist, J., "Fuel Effects on Advanced Compression Ignition Load Limits," SAE Int. J. Adv. & Curr. Prac. in Mobility 4(2):570-582, 2022, https://doi.org/10.4271/2021-01-1172.
Language: English

References

  1. Scott , S. Estimation of the Fuel Efficiency Potential of Six Gasoline Blendstocks Identified by the U.S. Department of Energy’s Co-Optimization of Fuels and Engines Program SAE Technical Paper 2019-01-0017 2019 https://doi.org/10.4271/2019-01-0017
  2. Thring , R. Homogeneous-Charge Compression-Ignition (HCCI) Engines SAE Technical Paper 892068 1989 https://doi.org/10.4271/892068
  3. Heywood , J.B. Internal Combustion Engine Fundamentals New York McGraw-Hill Inc. 1988 ISBN 007028637X
  4. Chang , J. , Güralp , O. , Filipi , Z. , Assanis , D. et al. New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux SAE Technical Paper 2004-01-2996 2004 https://doi.org/10.4271/2004-01-2996
  5. Caton , J.A. A Comparison of Lean Operation and Exhaust Gas Recirculation: Thermodynamic Reasons for the Increases of Efficiency SAE Technical Paper 2013-01-0266 2013 https://doi.org/10.4271/2013-01-0266
  6. Lawler , B. , Ortiz-Soto , E. , Gupta , R. , Peng , H. et al. Hybrid Electric Vehicle Powertrain and Control Strategy Optimization to Maximize the Synergy with a Gasoline HCCI Engine SAE Int. J. Engines 4 1 2011 1115 1126 10.4271/2011-01-0888
  7. Zyada , A. , Hollowell , J. , Shirley , M. , Fantin , N. et al. Demonstration of Better than Diesel Efficiency and Soot Emissions using Gasoline Compression Ignition in a Light Duty Engine with a Fuel Pressure Limitation SAE Technical Paper 2021-01-0518 2021 https://doi.org/10.4271/2021-01-0518
  8. Dempsey , A. , Curran , S. , and Wagner , R. A Perspective on the Range of Gasoline Compression Ignition Combustion Strategies for High Engine Efficiency and Low NOx and Soot Emissions: Effects of In-cylinder Fuel Stratification Int. J. Engine Res. 17 8 2016 897 917 10.1177/1468087415621805
  9. Eng , J.A. Characterization of Pressure Waves in HCCI Combustion SAE Technical Paper 2002-01-2859 2002 https://doi.org/10.4271/2002-01-2859
  10. Curran , S. and Wagner , R. Impact of Multimode Range and Location on Urban Fuel Economy on a Light-Duty Spark-Ignition Based Powertrain Using Vehicle System Simulations SAE Technical Paper 2020-01-1018 2020 https://doi.org/10.4271/2020-01-1018
  11. Szybist , J.P. , Nafziger , E. , and Weall , A. Load Expansion of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation SAE Int. J. Engines 3 2 2010 244 258 10.4271/2010-01-2172
  12. Olesky , L.M. , Martz , J.B. , Lavoie , G.A. , Vavra , J. et al. The Effects of Spark Timing, Unburned Gas Temperature, and Negative Valve Overlap on the Rates of Stoichiometric Spark Assisted Compression Ignition Combustion Appl. Energy 105 2013 407 417 10.1016/j.apenergy.2013.01.038
  13. Yun , H. , Wermuth , N. , and Najt , P. Extending the High Load Operating Limit of a Naturally-Aspirated Gasoline HCCI Combustion Engine SAE Int. J. Engines 3 1 2010 681 699 10.4271/2010-01-0847
  14. Nakai , E. , Goto , T. , Ezumi , T. , Twumura , Y. et al. Mazda SKYACTIV-X 2.0L gaoline engine Proceedings of the 28th Aachen Colloqium Automobile and Engine Technology 2019 55 78
  15. Szybist , J.P. , Busch , S. , McCormick , R.L. , Pihl , J.A. et al. What Fuel Properties Enable Higher Thermal Efficiency in Spark-Ignited Engines? Prog. Energy Combust. Sci. 82 2020 100876
  16. Szybist , J.P. and Splitter , D.A. Impact of Engine Pressure-Temperature Trajectory on Autoignition for Varying Fuel Properties Appl. Energy Combust. Sci. 1-4 June 2020 100003 10.1016/j.jaecs.2020.100003
  17. Lopez Pintor , D. , Dec , J. , and Gentz , G. φ-sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize this Property SAE Technical Paper 2019-01-0961 2019 https://doi.rg/10.4271/2019-01-0961
  18. Powell , T. , Szybist , J. , Dal Forno Chuahy , F. , Curran , S. et al. Octane Index Applicability over the Pressure - Temperature Domain Energies 14 3 2021 607
  19. Szybist , J.P. and Splitter , D.A. Pressure and Temperature Effects on Fuels with Varying Octane Sensitivity at High Load in SI Engines Combust. Flame 177 2017 49 66 10.1016/j.combustflame.2016.12.002
  20. Jatana , G.S. , Splitter , D.A. , Kaul , B. , and Szybist , J.P. Fuel Property Effects on Low-Speed Pre-ignition Fuel 230 May 2018 474 482 10.1016/j.fuel.2018.05.060
  21. Kalghatgi , G.T. Fuel Anti-Knock Quality-Part I. Engine Studies SAE Technical Paper 2001-01-3584 2001 https://doi.org/10.4271/2001-01-3584
  22. Kalghatgi , G.T. , Nakata , K. , and Mogi , K. Octane Appetite Studies in Direct Injection Spark Ignition (DISI) Engines SAE Technical Paper 2005-01-0244 2005 https://doi.org/10.4271/2005-01-0244
  23. Woschni , G. and Spindler , W. Heat Transfer With Insulated Combustion Chamber Walls and Its Influence on the Performance of Diesel Engines J. Eng. Gas Turbines Power 110 July 1988 1988 482 10.1115/1.3240146
  24. Ortiz-Soto , E. , Vavra , J. , and Babajimopoulos , A. Assessment of Residual Mass Estimation Methods for Cylinder Pressure Heat Release Analysis of HCCI Engines With Negative Valve Overlap J. Eng. Gas Turbines Power 134 8 2012 082802 10.1115/1.4006701
  25. Yun , H. and Mirsky , W. Schlieren-Streak Measurements of Instantaneous Exhaust Gas Velocities from a Spark-Ignition Engine SAE Technical Paper 741015 1974 https://doi.org/10.4271/741015
  26. Fitzgerald , R.P. , Steeper , R. , Snyder , J. , Hanson , R. et al. Determination of Cycle Temperatures and Residual Gas Fraction for HCCI Negative Valve Overlap Operation SAE Int. J. Engines 3 1 2010 10.4271/2010-01-0343
  27. Hu , Z. , Zhang , J. , Sjöberg , M. , and Zeng , W. The Use of Partial Fuel Stratification to Enable Stable Ultra-Lean Deflagration-Based Spark-Ignition Engine Operation with Controlled End-Gas Autoignition of Gasoline and E85 Int. J. Engine Res. 21 9 2020 1678 1695 10.1177/1468087419889702
  28. Fouts , L.A. , Fioroni , G.M. , Christensen , E.D. , Ratcliff , M.A. et al. Co-Optimization of Fuels & Engines: Properties of Co-Optima Core Research Gasolines. Technical Report NREL/TP-5400-71341 Golden, CO National Renewable Energy Laboratory 2018 10.2172/1467176
  29. Gentz , G. , Dernotte , J. , Ji , C. , Lopez Pintor , D. et al. Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates SAE Technical Paper 2019-01-1156 2019 https://doi.org/10.4271/2019-01-1156
  30. Pintor , D.L. , Dec , J. , and Gentz , G. Experimental Evaluation of a Custom Gasoline-Like Blend Designed to Simultaneously Improve ϕ -Sensitivity, RON and Octane Sensitivity SAE Int. J. Adv. Curr. Pract. Mobil. 2 4 2020 2196 2216 10.4271/2020-01-1136
  31. Aikawa , K. , Sakurai , T. , and Jetter , J.J. Development of a Predictive Model for Gasoline Vehicle Particulate Matter Emissions SAE Int. J. Fuels Lubr. 3 2 2010 610 622 10.4271/2010-01-2115
  32. Sjöberg , M. and Dec , J.E. EGR and Intake Boost for Managing HCCI Low-Temperature Heat Release Over Wide Ranges of Engine Speed SAE Technical Paper 2007-01-0051 2007 https://doi.org/10.4271/2007-01-0051
  33. Kim , N. , Vuilleumier , D. , He , X. , and Sjöberg , M. Ability of Particulate Matter Index to Describe Sooting Tendency of Various Gasoline Formulations in a Stratified-Charge Spark-Ignition Engine Proc. Combust. Inst. 38 4 2021 1 9 10.1016/j.proci.2020.06.173

Cited By