This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Multi-Resonant Speed Piezoelectric Beam Device for Harvesting Energy from Vehicle Wheels

Journal Article
2020-01-1236
ISSN: 2641-9645, e-ISSN: 2641-9645
Published April 14, 2020 by SAE International in United States
A Multi-Resonant Speed Piezoelectric Beam Device for Harvesting Energy from Vehicle Wheels
Sector:
Citation: Cooley, C., "A Multi-Resonant Speed Piezoelectric Beam Device for Harvesting Energy from Vehicle Wheels," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(4):2267-2275, 2020, https://doi.org/10.4271/2020-01-1236.
Language: English

References

  1. Bowen , C.R. and Arafa , M.H. Energy Harvesting Technologies for Tire Pressure Monitoring Systems Adv. Energy Mater. 5 7 1401787 2015 10.1002/aenm.201401787
  2. Yu , L. , Zheng , S. , and Chang , J. Energy Harvesting in Tire: State-of-the-Art and Challenges SAE Int J Passeng Cars - Electron Electr Syst 11 3 159 170 2018 https://doi.org/10.4271/2018-01-1119
  3. Kubba , A.E. and Jiang , K. A Comprehensive Study on Technologies of Tyre Monitoring Systems and Possible Energy Solutions Sensors 14 6 10306 10345 2014 10.3390/s140610306
  4. Roundy , S. Energy Harvesting for Tire Pressure Monitoring Systems: Design Considerations Proceedings of PowerMEMS 2008 Sendai, Japan 2008
  5. Zheng , Q. and Xu , Y. Asymmetric Air-Spaced Cantilevers for Vibration Energy Harvesting Smart Mater. Struct. 17 5 055009 2008 10.1088/0964-1726/17/5/055009
  6. Roundy , S. and Tola , J. Energy Harvester for Rotating Environments Using Offset Pendulum and Nonlinear Dynamics Smart Mater. Struct. 23 10 105004 2014 10.1088/0964-1726/23/10/105004
  7. Gu , L. and Livermore , C. Passive Self-Tuning Energy Harvester for Extracting Energy from Rotational Motion Appl. Phys. Lett. 97 8 081904 2010 10.1063/1.3481689
  8. Gu , L. and Livermore , C. Compact Passively Self-Tuning Energy Harvesting for Rotating Applications Smart Mater. Struct. 21 1 015002 2012 10.1088/0964-1726/21/1/015002
  9. Khameneifar , F. , Moallem , M. , and Arzanpour , S. Modeling and Analysis of a Piezoelectric Energy Scavenger for Rotary Motion Applications J. Vib. Acoust. 133 1 011005 2011 10.1115/1.4002789
  10. Khameneifar , F. , Arzanpour , S. , and Moallem , M. A Piezoelectric Energy Harvester for Rotary Motion Applications: Design and Experiments IEEEASME Trans. Mechatron. 18 5 1527 1534 2013 10.1109/TMECH.2012.2205266
  11. Hsu , J.-C. , Tseng , C.-T. , and Chen , Y.-S. Analysis and Experiment of Self-Frequency-Tuning Piezoelectric Energy Harvesters for Rotational Motion Smart Mater. Struct. 23 7 075013 2014 10.1088/0964-1726/23/7/075013
  12. Guan , M. and Liao , W.-H. Design and Analysis of a Piezoelectric Energy Harvester for Rotational Motion System Energy Convers. Manag. 111 239 244 2016 10.1016/j.enconman.2015.12.061
  13. Zhang , Y. , Zheng , R. , Kaizuka , T. , Su , D. et al. Broadband Vibration Energy Harvesting by Application of Stochastic Resonance from Rotational Environments Eur. Phys. J. Spec. Top. 224 14-15 2687 2701 2015 https://doi.org/10.1140/epjst/e2015-02583-7
  14. Zhang , Y. , Zheng , R. , Shimono , K. , Kaizuka , T. et al. Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance Sensors 16 1727 2016
  15. Kim , H. , Tai , W.C. , Parker , J. , and Zuo , L. Self-Tuning Stochastic Resonance Energy Harvesting for Rotating Systems under Modulated Noise and Its Application to Smart Tires Mech. Syst. Signal Process. 122 769 785 2019 10.1016/j.ymssp.2018.12.040
  16. Hatipoglu , G. and Ürey , H. FR4-Based Electromagnetic Energy Harvester for Wireless Sensor Nodes Smart Mater. Struct. 19 1 015022 2010 10.1088/0964-1726/19/1/015022
  17. Eshghi , A.T. , Lee , S. , Lee , H. , and Kim , Y.-C. Parameter Study and Optimization for Piezoelectric Energy Harvester for TPMS Considering Speed Variation Smart Materials and Nondestructive Evaluation for Energy Systems 2016 2016 10.1117/12.2219567
  18. Esmaeeli , R. , Aliniagerdroudbari , H. , Hashemi , S.R. , Alhadri , M. et al. Design, Modeling, and Analysis of a High Performance Piezoelectric Energy Harvester for Intelligent Tires Int. J. Energy Res. 2019 10.1002/er.4441
  19. Esmaeeli , R. , Aliniagerdroudbari , H. , Hashemi , S.R. , Nazari , A. et al. A Rainbow Piezoelectric Energy Harvesting System for Intelligent Tire Monitoring Applications J. Energy Resour. Technol. 141 6 062007 2019 10.1115/1.4042398
  20. Cooley , C.G. and Chai , T. Energy Harvesting from the Vibrations of Rotating Systems J. Vib. Acoust. 140 2 021010 2017 10.1115/1.4038106
  21. Lu , H. , Chai , T. , and Cooley , C.G. Vibration Properties of a Rotating Piezoelectric Energy Harvesting Device That Experiences Gyroscopic Effects J. Sound Vib. 416 258 278 2018 10.1016/j.jsv.2017.11.028
  22. Gunn , B.E. , Theodossiades , S. , and Rothberg , S.J. A Nonlinear Concept of Electromagnetic Energy Harvester for Rotational Applications Journal of Vibration and Acoustics 141 3 031005 10.1115/1.4042040
  23. Alevras , P. and Theodossiades , S. Vibration Energy Harvester for Variable Speed Rotor Applications Using Passively Self-Tuned Beams J. Sound Vib. 444 176 196 2019 10.1016/j.jsv.2018.11.007
  24. Ramirez , J.M. , Gatti , C.D. , Machado , S.P. , and Febbo , M. A Piezoelectric Energy Harvester for Rotating Environment Using a Linked E-Shape Multi-Beam Extreme Mech. Lett. 27 8 19 2019 https://doi.org/10.1016/j.eml.2018.12.005

Cited By