This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Pedestrian Orientation Estimation Using CNN and Depth Camera
Technical Paper
2020-01-0700
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
This work presents a method for estimating human body orientation using a combination of convolutional neural network (CNN) and stereo camera in real time. The approach uses the CNN model to predict certain human body keypoints then transforms these points into a 3D space using the stereo vision system to estimate the body orientations. The CNN module is trained to estimate the shoulders, the neck and the nose positions, detecting of three points is required to confirm human detection and provided enough data to translate the points into 3D space.
Citation
Abughalieh, K. and Alawneh, S., "Pedestrian Orientation Estimation Using CNN and Depth Camera," SAE Technical Paper 2020-01-0700, 2020, https://doi.org/10.4271/2020-01-0700.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 |
Also In
References
- Wang , W. , Ahuja , A. , Zhang , Y. , Bonatti , R. , and Scherer , S. 2019
- Glas , D.F. , Miyashita , T. , Ishiguro , H. , and Hagita , N. Laser-Based Tracking of Human Position and Orientation Using Parametric Shape Modeling Advanced Robotics 23 405 428 2009
- Matsumoto , T. , Shimosaka , M. , Noguchi , H. , Sato , T. , and Mori , T. Pose Estimation of Multiple People Using Contour Features from Multiple Laser Range Finders 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems 2009
- Weinrich , C. , Vollmer , C. , and Gross , H.-M. Estimation of Human Upper Body Orientation for Mobile Robotics Using an Svm Decision Tree on Monocular Images 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 2012
- Ardiyanto , I. and Miura , J. Partial Least Squares-Based Human Upper Body Orientation Estimation with Combined Detection and Tracking Image and Vision Computing 32 904 915 2014
- Rybok , L. , Voit , M. , Ekenel , H.K. , and Stiefelhagen , R. Multi-View Based Estimation of Human Upper-Body Orientation 2010 20th International Conference on Pattern Recognition 2010
- Shimizu , M. , Koide , K. , Ardiyanto , I. , Miura , J. , and Oishi , S. LIDAR-Based Body Orientation Estimation by Integrating Shape and Motion Information 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO) 2016
- Chen , C. , Heili , A. , and Odobez , J.-M. A Joint Estimation of Head and Body Orientation Cues in Surveillance Video 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops) 2011
- Chen , J. , Wu , J. , Richter , K. , Konrad , J. , and Ishwar , P. Estimating Head Pose Orientation Using Extremely Low Resolution Images 2016 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI) 2016
- Choi , J. , Lee , B.-J. , and Zhang , B.-T. 2016
- Kohari , Y. , Miura , J. , and Oishi , S. CNN-Based Human Body Orientation Estimation for Robotic Attendant IAS-15 Workshop on Robot Perception of Humans 2018
- Varol , G. , Romero , J. , Martin , X. , Mahmood , N. , Black , M.J. , Laptev , I. , and Schmid , C. Learning from Synthetic Humans Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017
- Abughalieh , K. and Alawneh , S. Real Time 2D Pose Estimation for Pedestrian Path Estimation Using GPU Computing SAE Technical Paper 2019-01-0887 2019 https://doi.org/10.4271/2019-01-0887
- Cao , Z. , Hidalgo , G. , Simon , T. , Wei , S.-E. , and Sheikh , Y. 2018
- Tome , D. , Russell , C. , and Agapito , L. Lifting from the Deep: Convolutional 3d Pose Estimation from a Single Image Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017
- Lin , T.-Y. , Maire , M. , Belongie , S. , Hays , J. , Perona , P. , Ramanan , D. , Dollár , P. , and Zitnick , C.L. Microsoft Coco: Common Objects in Context European Conference on Computer Vision 2014
- Andriluka , M. , Pishchulin , L. , Gehler , P. , and Schiele , B. 2d Human Pose Estimation: New Benchmark and State of the Art Analysis Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2014
- Deng , Y. , Luo , P. , Loy , C.C. , and Tang , X. Pedestrian Attribute Recognition at Far Distance Proceedings of the 22nd ACM International Conference on Multimedia 2014
- Dominguez-Sanchez , A. , Cazorla , M. , and Orts-Escolano , S. Pedestrian Movement Direction Recognition Using Convolutional Neural Networks IEEE Transactions on Intelligent Transportation Systems 18 3540 3548 2017
- Chollet , F. et al. 2015
- Srivastava , N. , Hinton , G. , Krizhevsky , A. , Sutskever , I. , and Salakhutdinov , R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting The Journal of Machine Learning Research 15 1929 1958 2014
- Gross , H.-M. , Mueller , S. , Schroeter , C. , Volkhardt , M. , Scheidig , A. , Debes , K. , Richter , K. , and Doering , N. Robot Companion for Domestic Health Assistance: Implementation, Test and Case Study under Everyday Conditions in Private Apartments 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2015