This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Laminar Flame Speeds of Premixed Iso-Octane/Air Flames at High Temperatures with CO2 Dilution

Journal Article
2019-01-0572
ISSN: 2641-9637, e-ISSN: 2641-9645
Published April 02, 2019 by SAE International in United States
Laminar Flame Speeds of Premixed Iso-Octane/Air Flames at High Temperatures with CO<sub>2</sub> Dilution
Sector:
Citation: Duva, B., Chance, L., and Toulson, E., "Laminar Flame Speeds of Premixed Iso-Octane/Air Flames at High Temperatures with CO2 Dilution," SAE Int. J. Adv. & Curr. Prac. in Mobility 1(3):1148-1157, 2019, https://doi.org/10.4271/2019-01-0572.
Language: English

References

  1. Kee, R.J., Grcar, J.F., Smooke, J.A., and Meeks, E. , PREMIX: AFORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames (Albuquerque, N.M: Sandia National Laboratories, 1985).
  2. Chaos, M., Kazakov, A., Zhao, Z., and Dryer, F.L. , “A High-Temperature Chemical Kinetic Model for Primary Reference Fuels,” International Journal of Chemical Kinetics 39(7):399-414, 2007.
  3. Wu, C.K. and Law, C.K. , “On the Determination of Laminar Flame Speeds from Stretched Flames,” Symposium (International) on Combustion 20(1):1941-1949, 1985.
  4. Turns, S.R. , An Introduction to Combustion: Concepts and Applications Third Edition (New York: McGraw-Hill, 2012).
  5. Egolfopoulos, F.N., Hansen, N., Ju, Y., Kohse-Höinghaus, K. et al. , “Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry,” Progress in Energy and Combustion Science 43:36-67, 2014.
  6. Syed, I., Yeliana, Y., Mukherjee, A., Naber, J. et al. , “Numerical Investigation of Laminar Flame Speed of Gasoline - Ethanol/Air Mixtures with Varying Pressure, Temperature and Dilution,” SAE Int. J. Engines 3(1):517-528, 2010, doi:10.4271/2010-01-0620.
  7. Liao, Y.H. and Roberts, W.L. , “Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method,” Energy & Fuels 30(2):1317-1324, 2016.
  8. Takashi, H. and Kimitoshi, T. , “Laminar Flame Speeds of Ethanol, n-Heptane, Iso-Octane Air Mixtures,” Alternative Energy Sources III 5:447-457, 1983.
  9. Marshall, S.P., Taylor, S., Stone, C.R., Davies, T.J. et al. , “Laminar Burning Velocity Measurements of Liquid Fuels at Elevated Pressures and Temperatures with Combustion Residuals,” Combustion and Flame 158(10):1920-1932, 2011.
  10. Cracknell, R., Prakash, A., and Head, R. , “Influence of Laminar Burning Velocity on Performance of Gasoline Engines,” SAE Technical Paper 2012-01-1742 , 2012, doi:10.4271/2012-01-1742.
  11. Gülder, Ö.L. , “Laminar Burning Velocities of Methanol, Ethanol and Isooctane-Air Mixtures,” Symposium (International) on Combustion 19(1):275-281, 1982.
  12. Bradley, D., Hicks, R.A., Lawes, M., Sheppard, C.G.W. et al. , “The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-octane-Air and Iso-octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb,” Combustion and Flame 115(1-2):126-144, 1998.
  13. Kwon, O.C., Hassan, M.I., and Faeth, G.M. , “Flame/Stretch Interactions of Premixed Fuel-Vapor/O/N Flames,” Journal of Propulsion and Power 16(3):513-522, 2000.
  14. Huang, Y., Sung, C.J., and Eng, J.A. , “Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures,” Combustion and Flame 139(3):239-251, 2004.
  15. Kumar, K., Freeh, J.E., Sung, C.J., and Huang, Y. , “Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures,” Journal of Propulsion and Power 23(2):428-436, 2007.
  16. Kelley, A.P., Liu, W., Xin, Y.X., Smallbone, A.J. et al. , “Laminar Flame Speeds, Non-Premixed Stagnation Ignition, and Reduced Mechanisms in the Oxidation of Iso-Octane,” Proceedings of the Combustion Institute 33(1):501-508, 2011.
  17. Broustail, G., Halter, F., Seers, P., Moréac, G. et al. , “Experimental Determination of Laminar Burning Velocity for Butanol/Iso-Octane and Ethanol/Iso-Octane Blends for Different Initial Pressures,” Fuel 106:310-317, 2013.
  18. Li, Q., Fu, J., Wu, X., Tang, C. et al. , “Laminar Flame Speeds of Dmf/Iso-Octane-Air-N2/Co2 Mixtures,” Energy & Fuels 26(2):917-925.
  19. van Lipzig, J.P.J., Nilsson, E.J.K., de Goey, L.P.H., and Konnov, A.A. , “Laminar Burning Velocities of n-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures,” Fuel 90(8):2773-2781, 2011.
  20. Sileghem, L., Alekseev, V.A., Vancoillie, J., Van Geem, K.M. et al. , “Laminar Burning Velocity of Gasoline and the Gasoline Surrogate Components Iso-Octane, n-Heptane and Toluene,” Fuel 112:355-365, 2013.
  21. Zhang, X., Chenglong, T., Huibin, Y., Qianqian, L. et al. , “Laminar Flame Characteristics of Iso-Octane/n-Butanol Blend-Air Mixtures at Elevated Temperatures,” Energy & Fuels 27(4):2327-2335, 2013.
  22. Dirrenberger, P., Glaude, P.A., Bounaceur, R., Le Gall, H. et al. , “Laminar Burning Velocity of Gasolines with Addition of Ethanol,” Fuel 115:162-169, 2014.
  23. Baloo, M., Mollaei Dariani, B., Akhlaghi, M., and Chitsaz, I. , “Effect of Iso-Octane/Methane Blend on Laminar Burning Velocity and Flame Instability,” Fuel 144:264-273, 2015.
  24. Li, Q., Wu, J., and Huang, Z. , “Laminar Flame Characteristics of C1-C5 Primary Alcohol-Isooctane Blends at Elevated Temperature,” Energies 9(7):511.
  25. Mannaa, O., Mansour, M.S., Roberts, W.L., and Chung, S.H. , “Laminar Burning Velocities at Elevated Pressures for Gasoline and Gasoline Surrogates Associated with RON,” Combustion and Flame 162(6):2311-2321, 2015.
  26. Halter, F., Foucher, F., Landry, L., and Mounaïm-Rousselle, C. , “Effect of Dilution by Nitrogen and/or Carbon Dioxide on Methane and Iso-Octane Air Flames,” Combustion Science and Technology 181(6):813-827, 2009.
  27. Metghalchi, M. and Keck, J.C. , “Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature,” Combustion and Flame 48:191-210, 1982.
  28. Zhou, J.X., Cordier, M., Mounaïm-Rousselle, C., and Foucher, F. , “Experimental Estimate of the Laminar Burning Velocity of Iso-Octane in Oxygen-Enriched and Co2-Diluted Air,” Combustion and Flame 158(12):2375-2383, 2011.
  29. Galmiche, B., Halter, F., and Foucher, F. , “Effects of High Pressure, High Temperature and Dilution on Laminar Burning Velocities and Markstein Lengths of Iso-Octane/Air Mixtures,” Combustion and Flame 159(11):3286-3299, 2012.
  30. Michigan Occupational Safety and Health Administration , “Hazardous Work in Laboratories,” MIOSHA-STD-1212, 2015.
  31. “Michigan Hazardous Waste Management Act,” 2017, Retrieved from: https://www.michigan.gov/deq/0,4561,7-135-3312_4118_4240-9167--,00.html.
  32. Burke, M.P., Zheng, C., Ju, Y., and Dryer, F.L. , “Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames,” Combustion and Flame 156(4):771-779, 2009.
  33. Kelley, A.P. and Law, C.K. , “Nonlinear Effects in the Extraction of Laminar Flame Speeds from Expanding Spherical Flames,” Combustion and Flame 156(9):1844-1851, 2009.
  34. Munsin, R., Bodin, C., Lim, S., Phunpheeranurak, K. et al. , Design of Constant Volume Combustion Chamber (Cvcc) with Pre-Combustion Technique for Simulation of Ci Engine Conditions, 2013.
  35. ASTM International , “E681-09 Standard Test Method for Concentration Limits of Flammability of Chemicals (Vapors and Gases),” ASTM International, West Conshohocken, PA, 2009, 10.1520/E0681-09.
  36. Babrauskas, V. , Ignition Handbook: Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science (Issaquah, Wash: Fire Sciences, 2003).
  37. Eckhoff, R.K., Ngo, M., and Olsen, W. , “On the Minimum Ignition Energy (MIE) for Propane/Air,” 175, 2009, doi:10.1016/j.jhazmat.2009.09.162.
  38. Ferguson, C.R. and Keck, J.C. , “On Laminar Flame Quenching and Its Application to Spark Ignition Engines,” Combustion and Flame 28:197-205, 1997.
  39. Friedman, R. and Johnston, W.C. , “Pressure Dependence of Quenching Distance of Normal Heptane, Iso-Octane, Benzene, and Ethyl Ether Flames,” The Journal of Chemical Physics 20(5):919-920, 1952.
  40. Settles, G.S. , Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Berlin Heidelberg, Berlin, Heidelberg: Springer, 2001).
  41. Duva, B.C., Chance, L.E., and Toulson, E. , “A Review of Laminar Burning Velocity Determination from Spherically Expanding Flames in Constant Volume Combustion Chambers,” Combustion and Flame, manuscript in preparation.
  42. Bradley, D., Gaskell, P.H., and Gu, X.J. , “Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study,” Combustion and Flame 104(1):176-198, 1996.
  43. Balusamy, S., Cessou, A., and Lecordier, B. , “Direct Measurement of Local Instantaneous Laminar Burning Velocity by a New Piv Algorithm,” Experiments in Fluids 50(4):1109-1121, 2011.
  44. Varea, E., Modica, V., Vandel, A., and Renou, B. , “Measurement of Laminar Burning Velocity and Markstein Length Relative to Fresh Gases Using a New Postprocessing Procedure: Application to Laminar Spherical Flames for Methane, Ethanol and Isooctane/Air Mixtures,” Combustion and Flame 159(2):577-590, 2011.
  45. Chen, Z. , “On the Accuracy of Laminar Flame Speeds Measured from Outwardly Propagating Spherical Flames: Methane/Air at Normal Temperature and Pressure,” Combustion and Flame 162(6):2442-2453, 2015.
  46. Chen, Z., Burke, M.P., and Ju, Y. , “Effects of Lewis Number and Ignition Energy on the Determination of Laminar Flame Speed Using Propagating Spherical Flames,” Proceedings of the Combustion Institute 32(1):1253-1260, 2009.
  47. Kim, H.H., Won, S.H., Santner, J., Chen, Z. et al. , “Measurements of the Critical Initiation Radius and Unsteady Propagation of N-Decane/Air Premixed Flames,” Proceedings of the Combustion Institute 34(1):929-936, 2013.
  48. Matalon, M. and Matkowsky, B.J. , “Flames as Gasdynamic Discontinuities,” Journal of Fluid Mechanics 124:239-259, 2006.
  49. Kelley, A.P., Bechtold, J.K., and Law, C.K. , “Premixed Flame Propagation in a Confining Vessel with Weak Pressure Rise,” Journal of Fluid Mechanics 691:26-51, 2011.
  50. Wu, F., Liang, W., Chen, Z., Ju, Y. et al. , “Uncertainty in Stretch Extrapolation of Laminar Flame Speed from Expanding Spherical Flames,” Proceedings of the Combustion Institute 35(1):663-670, 2015.
  51. Courty, L., Chetehouna, K., Chen, Z., Halter, F. et al. , “Determination of Laminar Burning Speeds and Markstein Lengths of P-Cymene/Air Mixtures Using Three Models,” Combustion Science and Technology 186(4-5):490-503, 2014.
  52. Chen, Z. , “On the Extraction of Laminar Flame Speed and Markstein Length from Outwardly Propagating Spherical Flames,” Combustion and Flame 158(2):291-300, 2011.
  53. Markstein, G.H. , “Experimental and Theoretical Studies of Flame-Front Stability,” Journal of the Aeronautical Sciences 18(3):199-209, 1951.
  54. Moffat, R.J. , “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science 1(1):3-17, 1988.
  55. Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K. , “A Comprehensive Modeling Study of Iso-Octane Oxidation,” Combustion and Flame 129(3):253-280, 2002.
  56. Mehl, M., Pitz, W.J., Sjöberg, M., and Dec, J.E. , “Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine,” SAE Technical Paper 2009-01-1806 , 2009, doi:10.4271/2009-01-1806.
  57. Mehl, M., Curran, H.J., Pitz, W.J., and Westbrook, C.K. , “Chemical Kinetic Modeling of Component Mixtures Relevant to Gasoline,” presented at in 4th European Combustion Meeting 2009, 2009, Vienna, Austria.
  58. He, X., Donovan, M.T., Zigler, B.T., Palmer, T.R. et al. , “An Experimental and Modeling Study of Iso-Octane Ignition Delay Times under Homogeneous Charge Compression Ignition Conditions,” Combustion and Flame 142(3):266-275, 2005.
  59. Bogin, G.E. Jr., Luecke, J., Ratcliff, M.A., Osecky, E. et al. , “Effects of Iso-Octane/Ethanol Blend Ratios on the Observance of Negative Temperature Coefficient Behavior within the Ignition Quality Tester,” Fuel 186:82-90, 2016.
  60. Bhattacharya, A., Datta, A., and Wensing, M. , “Laminar Burning Velocity and Ignition Delay Time for Premixed Isooctane-Air Flames with Syngas Addition,” Combustion Theory and Modelling 21(2):228-247, 2017.
  61. He, X., Walton, S.M., Zigler, B.T., Wooldridge, M.S. et al. , “Experimental Investigation of the Intermediates of Isooctane During Ignition,” International Journal of Chemical Kinetics 39(9):498-517, 2007.

Cited By