This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Influence Mechanism of Electromechanical Parameters on Transient Vibration of Electric Wheel System

Journal Article
2019-01-0462
ISSN: 2641-9645, e-ISSN: 2641-9645
Published April 02, 2019 by SAE International in United States
Influence Mechanism of Electromechanical Parameters on Transient Vibration of Electric Wheel System
Sector:
Citation: Feng, Z., Zuo, S., and Mao, Y., "Influence Mechanism of Electromechanical Parameters on Transient Vibration of Electric Wheel System," SAE Int. J. Adv. & Curr. Prac. in Mobility 1(3):1014-1027, 2019, https://doi.org/10.4271/2019-01-0462.
Language: English

References

  1. Wang , Y. , Li , P. , and Ren , G. Electric Vehicles with In-Wheel Switched Reluctance Motors: Coupling Effects between Road Excitation and the Unbalanced Radial Force Journal of Sound & Vibration 372 69 81 2016 10.1016/j.jsv.2016.02.040
  2. Tan , D. and Wang , Q. Modeling and Simulation of the Vibration Characteristics of the In-Wheel Motor Driving Based on Bond Graph Shock Vib 2016 10.1155/2016/1982390
  3. Murata , S. Innovation by In-Wheel-Motor Drive Unit Veh System Dynamics 50 6 807 830 2012 10.1080/00423114.2012.666354
  4. Syed , F.U. , Kuang , M.L. , and Ying , H. Active Damping Wheel-Torque Control System to Reduce Driveline Oscillations in a Power-Split Hybrid Electric Vehicle IEEE Transactions on Vehicular Technology 58 9 4769 4785 2009 10.1109/TVT.2009.2025953
  5. Ivanov , V. , Savitski , D. , and Shyrokau , B. A Survey of Traction Control and Antilock Braking Systems of Full Electric Vehicles With Individually Controlled Electric Motors IEEE Transactions on Vehicular Technology 64 9 3878 3896 2015 10.1109/TVT.2014.2361860
  6. Chung , S.U. , Moon , S.H. , Kim , D.J. , and Kim , J.M. Development of a 20-Pole-24-Slot SPMSM with Consequent Pole Rotor for In-Wheel Direct Drive IEEE Transactions on Industrial Electronics 63 1 302 309 2015 10.1109/TIE.2015.2472375
  7. Ifedi , C.J. , Mecrow , B.C. , Brockway , S.T.M. , Boast , G.S. et al. Fault-Tolerant In-Wheel Motor Topologies for High-Performance Electric Vehicles IEEE Transactions on Industry Applications 49 3 1249 1257 2013 10.1109/TIA.2013.2252131
  8. Huang , X.Y. and Wang , J.M. Model Predictive Regenerative Braking Control for Lightweight Electric Vehicles with in Wheel Motors Proc IMechE Part D: J Automobile Engineering 226 9 1220 1232 2012 10.1177/0954407012440934
  9. Nam , K. , Fujimoto , H. , and Hori , Y. Lateral Stability Control of In-Wheel-Motor-Driven Electric Vehicles Based on Sideslip Angle Estimation Using Lateral Tire Force Sensors IEEE Transactions on Vehicular Technology 2012 5 61 1972-1985 10.1109/TVT.2012.2191627
  10. Kim , J. , Park , C. , Hwang , S. , Hori , Y. et al. Control Algorithm for an Independent Motor-Drive Vehicle IEEE Transactions on Vehicular Technology 59 7 3213 3222 2010 10.1109/TVT.2010.2053566
  11. Wallmark , O. , Harnefors , L. , and Carlson , O. Control Algorithms for a Fault-Tolerant PMSM Drive IEEE Transactions on Industrial Electronics 54 4 1973 1980 2007 10.1109/IECON.2005.1569121
  12. Luo , Y. and Tan , D. Study on the Dynamics of the In-Wheel Motor System IEEE Transactions on Vehicular Technology 61 8 3510 3518 2012 10.1109/TVT.2012.2207414
  13. Tan , D. , Lu , C. , and Ren , C. Optimal Matching between the Suspension and the Rubber Bushing of the In-Wheel Motor System Proc IMechE Part D: J Automobile Engineering 229 6 758 769 2015 10.1177/0954407014547928
  14. Wang , Y. , Li , Y. , Sun , W. , and Zheng , L. Effect of the Unbalanced Vertical Force of a Switched Reluctance Motor on the Stability and the Comfort of an In-Wheel Motor Electric Vehicle Proc IMechE Part D: J Automobile Engineering 229 12 1569 1584 2015 10.1177/0954407014566438
  15. Sun , W. , Li , Y. , Huang , J. , and Zhang , N. Vibration Effect and Control of In-Wheel Switched Reluctance Motor for Electric Vehicle Journal of Sound & Vibration 338 105 120 2015 10.1016/j.jsv.2014.10.036
  16. Zuo , S.G. , Duan , X.L. , and Wu , X.D. Vibration Test Analysis of an Electric Wheel-Suspension System on a Test Bed Journal of Vibration and Shock 33 12 165 187 2014
  17. Zuo , S.G. , Duan , X.L. , and Wu , X.D. Modeling and Analysis of Rigid Ring Coupling Model of Electric Wheel Journal of Tongji University (Natural Science) 42 10 1578 1585 2014 10.11908/j.issn.0253-374x.2014.10.019
  18. Jianqiu , L.I. , Song , Z. , Wei , Y. , and Ouyang , M. Influence of Tire Dynamics on Slip Ratio Estimation of Independent Driving Wheel System Chinese Journal of Mechanical Engineering 27 6 1203 1210 2014 10.3901/CJME.2014.0912.150
  19. Pillay , P. and Krishnan , R. Modeling, Simulation, Analysis of Permanent Magnet Motor Drives Part I: The Permanent-Magnet Synchronous Motor Drive IEEE Trans. Ind. Appl. 25 2 265 273 1989
  20. Liang , W. , Wang , J. , Luk , C.K. , Fang , W. et al. Analytical Modeling of Current Harmonic Components in PMSM Drive with Voltage-Source Inverter by SVPWM Technique IEEE Transactions on Energy Conversion 29 3 673 680 2014
  21. Mao , Y. , Zuo , S. , and Wu , X. Longitudinal Vibration Analysis of Electric Wheel System in Starting Condition SAE Int. J. Veh. Dyn., Stab., and NVH 1 2 156 164 2017 10.4271/2017-01-1126
  22. Dong , H. , Wang , H. , and Huang , K.Y. Design of PMSM Drive System Digital PI Adjuster Parameters Electric Drive 39 1 7 10 2009
  23. Mao , Y. , Zuo , S. , Wu , X. , and Duan , X. High Frequency Vibration Characteristics of Electric Wheel System under In-Wheel Motor Torque Ripple Journal of Sound and Vibration 400 442 456 2017 10.1016/j.jsv.2017.04.011

Cited By