This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Influence of Engine Speed and Injection Phasing on Lean Combustion for Different Dilution Rates in an Optically Accessible Wall-Guided Spark Ignition Engine

Journal Article
2018-01-1421
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 03, 2018 by SAE International in United States
Influence of Engine Speed and Injection Phasing on Lean Combustion for Different Dilution Rates in an Optically Accessible Wall-Guided Spark Ignition Engine
Sector:
Citation: Irimescu, A., Merola, S., and Martinez, S., "Influence of Engine Speed and Injection Phasing on Lean Combustion for Different Dilution Rates in an Optically Accessible Wall-Guided Spark Ignition Engine," SAE Int. J. Engines 11(6):1343-1369, 2018, https://doi.org/10.4271/2018-01-1421.
Language: English

References

  1. Castilla Alvarez , C.E. , Elias Couto , G. , Rückert Roso , V. , Braga Thiriet , A. et al. A Review of Prechamber Ignition Systems as Lean Combustion Technology for SI Engines Appl. Therm. Eng. 128 107 120 2018 10.1016/j.applthermaleng.2017.08.118
  2. Fontana , G. and Galloni , E. Experimental Analysis of a Spark-Ignition Engine Using Exhaust Gas Recycle at WOT Operation Appl. Energy 87 2187 2193 2010 10.1016/j.apenergy.2009.11.022
  3. Alger , T. , Gukelberger , R. , and Gingrich , J. Impact of EGR Quality on the Total Inert Dilution Ratio SAE Int. J. Engines 9 2 796 806 2016 10.4271/2016-01-0713
  4. Wallner , T. , Lohse-Busch , H. , and Shidore , N. Operating Strategy for a Hydrogen Engine for Improved Drive-Cycle Efficiency and Emissions Behavior Int. J. Hydrogen Energy 34 10 4617 4625 2009 10.1016/j.ijhydene.2008.07.099
  5. Park , C. , Lee , S. , Kim , C. , and Choi , Y. A Comparative Study of Lean Burn and Exhaust Gas Recirculation in an HCNG-Fueled Heavy-Duty Engine Int. J. Hydrogen Energy 42 41 26094 26101 2017 10.1016/j.ijhydene.2017.08.170
  6. Sjöberg , M. and Zeng , W. Combined Effects of Fuel and Dilution Type on Efficiency Gains of Lean Well-Mixed DISI Engine Operation with Enhanced Ignition and Intake Heating for Enabling Mixed-Mode Combustion SAE Int. J. Engines 9 2 750 767 2016 10.4271/2016-01-0689
  7. Watson , H. , Mehrani , P. , and Brear , M. The Always Lean Burn Spark Ignition (ALSI) Engine - Its Performance and Emissions SAE Technical Paper 2009-01-0932 2009 10.4271/2009-01-0932
  8. Wagner , R. , Drallmeier , J. , and Daw , C. Prior-Cycle Effects in Lean Spark Ignition Combustion - Fuel/Air Charge Considerations SAE Technical Paper 981047 1998 10.4271/981047
  9. Hanabusa , H. , Kondo , T. , Hashimoto , K. , and Furutani , M. Study on Cyclic Variations of Laminar Flame Speed in Homogeneous Lean Charge Spark Ignition Combustion SAE Technical Paper 2016-01-2173 2016 10.4271/2016-01-2173
  10. Kolodziej , C. , Pamminger , M. , Sevik , J. , Wallner , T. et al. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion SAE Int. J. Fuels Lubr. 10 1 82 94 2017 10.4271/2017-01-0671
  11. Peterson , B. , Reuss , D.L. , and Sick , V. On the Ignition and Flame Development in a Spray-Guided Direct-Injection Spark-Ignition Engine Combust. Flame 161 1 240 255 2014 10.1016/j.combustflame.2013.08.019
  12. Myung , C.L. and Park , S. Exhaust Nanoparticle Emissions from Internal Combustion Engines: A Review Int. J. Automot. Technol. 13 1 9 22 2012 10.1007/s12239−012−0002−y
  13. Überall , A. , Otte , R. , Eilts , P. , and Krahl , J. A Literature Research about Particle Emissions from Engines with Direct Gasoline Injection and the Potential to Reduce These Emissions Fuel 147 203 207 2015 10.1016/j.fuel.2015.01.012
  14. Bertsch , M. , Weidenlener , A. , Dörnhöfer , J. , Koch , T. et al. Effect of Implementing Large-Scale Charge Motion, Reducing Hydraulic Flow of the Injector and Increasing Injection Pressure on Particle Emissions of a GDI Engine at WOT and Boosted Operation Int. J. Engine Res. 18 5-6 467 489 2016 10.1177/1468087416670248
  15. Song , J. , Kim , T. , Jang , J. , and Park , S. Effects of the Injection Strategy on the Mixture Formation and Combustion Characteristics in a DISI (Direct Injection Spark Ignition) Optical Engine Energy 93 1758 1768 2015 10.1016/j.energy.2015.10.058
  16. Gu , X. , Shiono , H. , Nakaya , S. , and Tsue , M. Ignition Performance of Pulsed Microwave-Assisted Sparks in Lean Methane/Air Mixture SAE Technical Paper 2015-01-1898 2015 10.4271/2015-01-1898
  17. Bresler , M. , Attard , W. , and Reese , R. Investigation of Alternative Ignition System Impact on External EGR Dilution Tolerance in a Turbocharged Homogeneous Direct Injected Spark Ignited Engine SAE Int. J. Engines 8 4 1967 1976 2015 10.4271/2015-01-9043
  18. Poggiani , C. , Cimarello , A. , Battistoni , M. , Grimaldi , C. et al. Optical Investigations on a Multiple Spark Ignition System for Lean Engine Operation SAE Technical Paper 2016-01-0711 2016 10.4271/2016-01-0711
  19. Xie , K. , Yu , S. , Yu , X. , Bryden , G. et al. Investigation of Multi-Pole Spark Ignition under Lean Conditions and with EGR SAE Technical Paper 2017-01-0679 2017 10.4271/2017-01-0679
  20. Tang , Q. , Liu , H. , Li , M. , Yao , M. et al. Study on Ignition and Flame Development in Gasoline Partially Premixed Combustion Using Multiple Optical Diagnostics Combust. Flame 177 98 108 2017 10.1016/j.combustflame.2016.12.013
  21. Aleiferis , P. , Taylor , A. , Whitelaw , J. , Ishii , K. et al. Cyclic Variations of Initial Flame Kernel Growth in a Honda VTEC-E Lean-Burn Spark-Ignition Engine SAE Technical Paper 2000-01-1207 2000 10.4271/2000-01-1207
  22. Jung , D. , Sasaki , K. , and Iida , N. Effects of Increased Spark Discharge Energy and Enhanced In-Cylinder Turbulence Level on Lean Limits and Cycle-to-Cycle Variations of Combustion Appl. Energy 205 1467 1477 2017 10.1016/j.apenergy.2017.08.043
  23. Mostafijur Rahman , K. , Kawahara , N. , Matsunaga , D. , Tomita , E. et al. Local Fuel Concentration Measurement through Spark-Induced Breakdown Spectroscopy in a Direct-Injection Hydrogen Spark-Ignition Engine Int. J. Hydrogen Energy 41 32 14283 14292 2016 10.1016/j.ijhydene.2016.05.280
  24. Merola , S.S. , Di Iorio , S. , Irimescu , A. , Sementa , P. et al. Spectroscopic Characterization of Energy Transfer and Thermal Conditions of the Flame Kernel in a Spark Ignition Engine Fueled with Methane and Hydrogen Int. J. Hydrogen Energy 42 18 13276 13288 2017 10.1016/j.ijhydene.2017.03.219
  25. Truffin , K. , Angelberger , C. , Richard , S. , and Pera , C. Using Large-Eddy Simulation and Multivariate Analysis to Understand the Sources of Combustion Cyclic Variability in a Spark-Ignition Engine Combust. Flame 162 12 4371 4390 2015 10.1016/j.combustflame.2015.07.003
  26. Sforza , L. , Lucchini , T. , Onorati , A. , Zhu , X. et al. Modeling Ignition and Premixed Combustion Including Flame Stretch Effects SAE Technical Paper 2017-01-0553 2017 10.4271/2017-01-0553
  27. Bowditch , F. A New Tool for Combustion Research a Quartz Piston Engine SAE Technical Paper 610002 1961 10.4271/610002
  28. Merola , S.S. , Marchitto , L. , Tornatore , C. , Valentino , G. et al. Optical Characterization of Combustion Processes in a DISI Engine Equipped with Plasma-Assisted Ignition System Appl. Therm. Eng. 69 1-2 177 187 2014 10.1016/j.applthermaleng.2014.04.046
  29. Irimescu , A. , Marchitto , L. , Merola , S.S. , Tornatore , C. et al. Evaluation of Different Methods for Combined Thermodynamic and Optical Analysis of Combustion in Spark Ignition Engines Energy Convers. Manag. 87 914 927 2014 10.1016/j.enconman.2014.07.037
  30. Martinez , S. , Irimescu , A. , Merola , S.S. , Lacava , P. et al. Flame Front Propagation in an Optical GDI Engine under Stoichiometric and Lean Burn Conditions Energies 10 1337 2017 10.3390/en10091337
  31. Iaccarino , S. , Breda , S. , D’Adamo , A. , Fontanesi , S. et al. Numerical Simulation and Flame Analysis of Combustion and Knock in a DISI Optically Accessible Research Engine SAE Int. J. Engines 10 2 576 592 2017 10.4271/2017-01-0555
  32. Soika , A. , Dinkelacker , F. , and Leipertz , A. Pressure Influence on the Flame Front Curvature of Turbulent Premixed Flames: Comparison between Experiment and Theory Combust. Flame 132 3 451 462 2003 10.1016/S0010-2180(02)00490-X
  33. Bradley , D. , Gaskell , P.H. , Sedaghat , A. , and Gu , X.J. Generation of PDFS for Flame Curvature and for Flame Stretch Rate in Premixed Turbulent Combustion Combust. Flame 135 4 503 523 2003 10.1016/S0010-2180(03)00181-0
  34. Merola , S.S. , Irimescu , A. , Marchitto , L. , Tornatore , C. et al. Effect of Injection Timing on Combustion and Soot Formation in a Direct Injection Spark Ignition Engine Fueled with Butanol Int. J. Engine Res. 18 5-6 490 504 2017 10.1177/1468087416671017
  35. Heywood , J.B. Internal Combustion Engine Fundamentals New York McGraw Hill 1988
  36. Irimescu , A. , Tornatore , C. , Marchitto , L. , and Merola , S.S. Compression Ratio and Blow-By Rates Estimation Based on Motored Pressure Trace Analysis for an Optical Spark Ignition Engine Appl. Therm. Eng. 61 2 101 109 2013 10.1016/j.applthermaleng.2013.07.036
  37. Irimescu , A. , Merola , S.S. , and Valentino , G. Application of an Entrainment Turbulent Combustion Model with Validation Based on the Distribution of Chemical Species in an Optical Appl. Energy 162 908 923 2016 10.1016/j.apenergy.2015.10.136
  38. Merola , S.S. , Irimescu , A. , Tornatore , C. , and Valentino , G. Effect of the Fuel-Injection Strategy on Flame-Front Evolution in an Optical Wall-Guided DISI Engine with Gasoline and Butanol Fueling J. Energy Eng. 142 2 E4015004 2015 10.1061/(ASCE)EY.1943-7897.0000301
  39. Gaydon , A.G. The Spectroscopy of Flames London Chapman and Hall 1957
  40. Crosley , D.R. and Lengel , R.K. Relative Transition Probabilities and the Electronic Transition Moment in the A-X System of OH J. Quant. Spectrosc. Radiat. Transf. 15 7-8 579 591 1975 10.1016/0022-4073(75)90026-6
  41. Merola , S. , Marchitto , L. , Tornatore , C. , Valentino , G. et al. UV-Visible Optical Characterization of the Early Combustion Stage in a DISI Engine Fuelled with Butanol-Gasoline Blend SAE Int. J. Engines 6 4 1953 1969 2013 10.4271/2013-01-2638
  42. Hayashida , K. , Amagai , K. , Satoh , K. , and Arai , M. Experimental Analysis of Soot Formation in Sooting Diffusion Flame by Using Laser-Induced Emissions J. Eng. Gas Turbines Power 128 2 241 246 2006 10.1115/1.2056536
  43. Stewart , S.M. Spectral Peaks and Wien’s Displacement Law J. Thermophys. Heat Transf. 26 4 689 692 2012 10.2514/1.T3789
  44. Zhang , Z.M. and Wang , X.J. Unified Wien’s Displacement Law in Terms of Logarithmic Frequency or Wavelength Scale J. Thermophys. Heat Transf. 24 1 222 224 2010 10.2514/1.45992
  45. Böhm , H. , Hesse , D. , Jander , H. , Lüers , B. et al. The Influence of Pressure and Temperature on Soot Formation in Premixed Flames Symposium (International) on Combustion 22 1 403 411 1989 10.1016/S0082-0784(89)80047-5
  46. Li , T. , Yin , T. , and Wang , B. Anatomy of the Cooled EGR Effects on Soot Emission Reduction in Boosted Spark-Ignited Direct-Injection Engines Appl. Energy 190 43 56 2017 10.1016/j.apenergy.2016.12.105
  47. Kang , K.Y. and Baek , J.H. Turbulence Characteristics of Tumble Flow in a Four-Valve Engine Exp. Therm. Fluid. Sci. 18 231 243 1998 10.1016/S0894-1777(98)10023-7
  48. Matalon , M. and Francesco , C. The “Turbulent Flame Speed” of Wrinkled Premixed Flames Comptes Rendus Mécanique 340 11-12 845 858 2012 10.1016/j.crme.2012.10.031
  49. Fragner , R. , Halter , F. , Mazellier , N. , Chauveau , C. et al. Investigation of Pressure Effects on the Small Scale Wrinkling of Turbulent Premixed Bunsen Flames Proc. Combust. Inst. 35 2 1527 1535 2015 10.1016/j.proci.2014.06.036
  50. Ranga Dinesh , K.K.J. , Shalaby , H. , Luo , K.H. , van Oijen , J.A. , et al. Heat Release Rate Variations in High Hydrogen Content Premixed Syngas Flames at Elevated Pressures: Effect of Equivalence Ratio Int. J. Hydrogen Energy 42 10 7029 7044 2017 10.1016/j.ijhydene.2016.11.205
  51. Kayes , D. and Hochgreb , S. Mechanisms of Particulate Matter Formation in Spark-Ignition Engines. 1. Effects of Engine Operating Conditions Environ. Sci. Technol. 33 3957 3967 1999 10.1021/es9810991
  52. Matsumoto , A. , Zheng , Y. , Xie , X. , Lai , M. et al. Interactions of Multi-Hole DI Sprays with Charge Motion and their Implications to Flexible Valve-Trained Engine Performance SAE Technical Paper 2011-01-1883 2011 10.4271/2011-01-1883
  53. Yu , H. , Liang , X. , Shu , G. , Sun , X. et al. Experimental Investigation on Wall Film Ratio of Diesel, Butanol/Diesel, DME/Diesel and Gasoline/Diesel Blended Fuels during the Spray Wall Impingement Process Fuel Process. Technol. 156 9 18 2017 10.1016/j.fuproc.2016.09.029
  54. Beavis , N.J. , Ibrahim , S.S. , and Malalasekera , W. Impingement Characteristics of an Early Injection Gasoline Direct Injection Engine: A Numerical Study Int. J. Engine Res. 18 4 378 393 2017 10.1177/1468087416663325
  55. Beretta , G.P. , Rashidi , M. , and Keck , J.C. Turbulent Flame Propagation and Combustion in Spark Ignition Engines Combust. Flame 52 217 245 1983 10.1016/0010-2180(83)90135-9
  56. Irimescu , A. , Merola , S.S. , Tornatore , C. , and Valentino , G. Development of a Semi-Empirical Convective Heat Transfer Correlation Based on Thermodynamic and Optical Measurements in a Spark Ignition Engine Appl. Energy 157 777 788 2015 10.1016/j.apenergy.2015.02.050
  57. Irimescu , A. , Di Iorio , S. , Merola , S. , Sementa , P. et al. On the Entrainment Velocity and Characteristic Length Scales Used for Quasi-Dimensional Turbulent Combustion Modeling in Spark Ignition Engines SAE Technical Paper 2017-24-0002 2017 10.4271/2017-24-0002
  58. Irimescu , A. , Di Iorio , S. , Merola , S. , Sementa , P. et al. Correlation between Simulated Volume Fraction Burned Using a Quasi-Dimensional Model and Flame Area Measured in an Optically Accessible SI Engine SAE Technical Paper 2017-01-0545 2017 10.4271/2017-01-0545
  59. Mann , K. , Ting , D. , and Henshaw , P. A Semi-Empirical Model of Spark-Ignited Turbulent Flame Growth SAE Technical Paper 2000-01-0201 2000 10.4271/2000-01-0201
  60. Breda , S. , D’Adamo , A. , Fontanesi , S. , Del Pecchia , M. et al. CFD Optimization of N-Butanol Mixture Preparation and Combustion in an Research GDI Engine SAE Technical Paper 2017-24-0063 2017
  61. Kosmadakis , G.M. , Rakopoulos , D.C. , and Rakopoulos , C.D. Methane/Hydrogen Fueling a Spark-Ignition Engine for Studying NO, CO and HC Emissions with a Research CFD Code Fuel 185 903 915 2016 10.1016/j.fuel.2016.08.040
  62. Zeng , W. , Sjöberg , M. , Reuss , D.L. , and Hu , Z. The Role of Spray-Enhanced Swirl Flow for Combustion Stabilization in a Stratified-Charge DISI Engine Combust. Flame 168 166 185 2016 10.1016/j.combustflame.2016.03.015
  63. Merola , S.S. , Irimescu , A. , Di Iorio , S. , and Vaglieco , B.M. Effect of Fuel Injection Strategy on the Carbonaceous Structure Formation and Nanoparticle Emission in a DISI Engine Fuelled with Butanol Energies 10 832 2017 10.3390/en10070832
  64. Breda , S. , D’Adamo , A. , Fontanesi , S. , D’Orrico , F. et al. Numerical Simulation of Gasoline and N-Butanol Combustion in an Optically Accessible Research Engine SAE Int. J. Fuels Lubr. 10 1 32 55 2017 10.4271/2017-01-0546
  65. Lucchini , T. , D’Errico , G. , Onorati , A. , Bonandrini , G. et al. Development of a CFD Approach to Model Fuel-Air Mixing in Gasoline Direct-Injection Engines SAE Technical Paper 2012-01-0146 2012 10.4271/2012-01-0146
  66. Lucchini , T. , D’ Errico , G. , Onorati , A. , Bonandrini , G. et al. Development and Application of a Computational Fluid Dynamics Methodology to Predict Fuel-Air Mixing and Sources of Soot Formation in Gasoline Direct Injection Engines Int. J. Engine Res. 15 5 581 596 2014 10.1177/1468087413500297
  67. Irimescu , A. Working Fluid Properties Variation during Combustion in Premixed Charge Hydrogen Engines SAE Technical Paper 2012-01-1646 2012 10.4271/2012-01-1646
  68. Irimescu , A. Comparison of Combustion Characteristics and Heat Loss for Gasoline and Methane Fueling of a Spark Ignition Engine Proc. Rom. Acad. Ser. A 14 2 161 168 2013

Cited By