This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Automatic Hex-Dominant Mesh Generation for Complex Flow Configurations

Journal Article
2018-01-0477
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 03, 2018 by SAE International in United States
Automatic Hex-Dominant Mesh Generation for Complex Flow Configurations
Sector:
Citation: Sawant, N., Yamakawa, S., Singh, S., and Shimada, K., "Automatic Hex-Dominant Mesh Generation for Complex Flow Configurations," SAE Int. J. Engines 11(6):615-624, 2018, https://doi.org/10.4271/2018-01-0477.
Language: English

References

  1. Schneiders , R. A Grid-Based Algorithm for the Generation of Hexahedral Element Meshes Engineering with Computers 12 168 177 1996
  2. Marechal , L. A New Approach to Octree-Based Hexahedral Meshing 10th International Meshing Roundtable 2001 209 221
  3. Blacker , T.D. and Meyers , R.J. Seams and Wedges in Plastering: A 3-D Hexahedral Mesh Generation Algorithm Engineering with Computers 2 83 93 1993
  4. Meyers , R.J. , Tautges , T.J. , and Tuchinsky , P.M. The “Hex-Tet” Hex-Dominant Meshing Algorithm as Implemented in CUBIT 7th International Meshing Roundtable 1998 151 158
  5. Tuchinsky , P.M. and Clark , B.W. The “Hex-Tet” Hex-Dominant Automesher: An Interim Progress Report 6th International Meshing Roundtable 1997 183 193
  6. Owen , S.J. and Sagal , S. H-Morph: An Indirect Approach to Advancing Front Hex Meshing International Journal of Numerical Methods in Engineering 49 289 312 2000
  7. Yamakawa , S. and Shimada , K. Geometric Modelling and Processing 107 118 2002
  8. Knupp , P.M. Achieving Finite Element Mesh Quality via Optimization of the Jacobian Norm and Associated Quantities Part II International Journal for Numerical Methods in Engineering 48 1165 1185 2000
  9. Freitag , L.A. and Plassmann , P. Local Optimization-Based Simplicial Mesh Untangling and Improvement International Journal for Numerical Methods in Engineering 49 109 125 2000
  10. Zhou , T. and Shimada , K. An Angle-Based Approach to Two-Dimensional Mesh Smoothing 9th International Meshing Roundtable 2000 373 384
  11. Aubry , R. , Karamete , K. , Mestreau , E. , Gayman , D. et al. Ensuring a Smooth Transition from Semi-Structured Surface Boundary Layer Mesh to Fully Unstructured Anisotropic Surface Mesh 53rd AIAA Aerospace Sciences Meeting 2015
  12. Vyas , V. and Shimada , K. Tensor-Guided Hex-Dominant Mesh Generation with Targeted All-Hex Regions 17th International Meshing Roundtable 2009 377 396
  13. Schlichting , H. and Gersten , K. Boundary-Layer Theory Eighth
  14. Belmabrouk , H. and Michard , M. Analysis of the Swirl Effect on Turbulent Scales in an ICE Cylinder by Two-Point LDV International Journal of Heat and Fluid Flow 22 417 423 2000
  15. Banaeizadeh , A. , Afshari , A. , Schock , H. , and Jaberi , F. Large-Eddy Simulations of Turbulent Flows in Internal Combustion Engines International Journal of Heat and Mass Transfer 60 781 796 1993
  16. ANSYS ICEM CFD http://www.ansys.com/Services/training-center/platform/introduction-to-ansys-icem-cfd-Hexa
  17. Thobois , L. , Rymer , G. , Souleres , T. , and Poinsot , T. Large-Eddy Simulation in IC Engine Geometries SAE Technical Paper 2004-01-1854 2004 10.4271/2004-01-1854
  18. Vreman , A. An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications Physics of Fluids 16 3670
  19. Werner , H. and Wengle , H. Large-Eddy Simulation of Turbulent Flow over and around a Cube in a Plate Channel Eighth Symposium on Turbulent Shear Flow Munich, Germany 1991
  20. OpenFOAM http://openfoam.com/documentation/
  21. Yang , X. , Chen , Z. , and Kuo , T.W. Pitfalls for Accurate Steady State Flow Simulations ASME J. Eng. Gas Turbine Power 135 6 2013 061601
  22. CONVERGE https://convergecfd.com
  23. Fang , T. and Singh , S. Predictions of Flow Separation at the Valve Seat for Steady-State Port-Flow Simulation Journal of Engineering for Gas Turbine and Power 137 2015

Cited By