This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Development of a Vehicle-Level Simulation Model for Evaluating the Trade-Off between Various Advanced On-Board Hydrogen Storage Technologies for Fuel Cell Vehicles
Technical Paper
2012-01-1227
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
One of the most critical elements in engineering a hydrogen fuel cell vehicle is the design of the on-board hydrogen storage system. Because the current compressed-gas hydrogen storage technology has several key challenges, including cost, volume and capacity, materials-based storage technologies are being evaluated as an alternative approach. These materials-based hydrogen storage technologies include metal hydrides, chemical hydrides, and adsorbent materials, all of which have drawbacks of their own. To optimize the engineering of storage systems based on these materials, it is critical to understand the impacts these systems will have on the overall vehicle system performance and what trade-offs between the hydrogen storage systems and the vehicle systems might exist that allow these alternative storage approaches to be viable.
To gain a better understanding of the interactions that exist between various materials-based hydrogen storage systems and the vehicle system as well as the engineering challenges that exist when integrating one of these systems with a vehicle, the National Renewable Energy Laboratory (NREL) developed a vehicle-level model designed to be sensitive to these issues. The Hydrogen Storage Simulation Model (HSSIM) was developed under the Hydrogen Storage Engineering Center of Excellence (HSECoE) as a specialized tool that could be used to assist in the design and engineering of materials-based hydrogen storage systems being considered by the HSECoE. This tool is designed to not only allow for understanding key trade-offs, but also to have a seamless integration with the HSECoE fuel cell and detailed hydrogen storage system models and to evaluate progress towards the U.S. Department of Energy's hydrogen storage technical targets. This model has been integrated with a fuel cell model developed by Ford Motor Company in a HSECoE common modeling framework developed by United Technologies Research Center and other HSECoE partners.
This paper focuses on the development, structure, and validation of the vehicle model HSSIM and summarizes its integration within the framework. HSSIM and the framework are then used to obtain trade-offs for various specific materials-based storage system designs. This includes hydrogen storage sizing analyses, mass compounding analyses, range versus volume studies, and vehicle and component performance analyses, such as acceleration rates and fuel cell and energy storage interactions.
Recommended Content
Technical Paper | AUTOMOBILE BODY DESIGN |
Technical Paper | Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications |
Authors
Citation
Thornton, M., Brooker, A., Cosgrove, J., Veenstra, M. et al., "Development of a Vehicle-Level Simulation Model for Evaluating the Trade-Off between Various Advanced On-Board Hydrogen Storage Technologies for Fuel Cell Vehicles," SAE Technical Paper 2012-01-1227, 2012, https://doi.org/10.4271/2012-01-1227.Also In
References
- U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy and The FreedomCAR and Fuel Partnership “Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles,” Sep. 2009
- Pasini, J.M. van Hassel, B.A. Mosher, D.A. Veenstra, M.J. “System Modeling Methodology and Analyses for Materials-Based Hydrogen Storage,” Int. J. Hydrogen Energy 37 2874 2884 2012 10.1016/j.ijhydene.2011.05.169
- van Hassel, B.A. Mosher, D. Pasini, J.M. Gorbounov, M. et al. “Engineering Improvement of NaAlH 4 System,” Int. J. Hydrogen Energy 37 2756 2766 2012 10.1016/j.ijhydene.2011.02.005
- U.S. Environmental Protection Agency http://www.gpo.gov/fdsys/pkg/FR-2011-07-06/html/2011-14291.htm July 2011
- U.S. Department of Energy, Energy Efficiency & Renewable Energy and U.S. Environmental Protection Agency www.fueleconomy.gov http://www.fueleconomy.gov/feg/fcv_sbs.shtml October 5 2011
- Transport Canada “Technical Sheet - Ford Focus Fuel Cell Electric Vehicle (FCEV),” http://www.tc.gc.ca/eng/programs/environment-etv-techfordfocus-eng-406.htm September 9 2011
- Hydrogen Fuel Cars Now http://www.hydrogencarsnow.com/chevy-equinox-fuel-cell-suv.htm October 6 2011
- Abuelsamid, S. “Technical Analysis: 2008 Chevrolet Equinox Fuel Cell/HydroGen4,” http://green.autoblog.com/2007/09/05/technical-analysis-2008-chevrolet-equinox-fuel-cell-hydrogen4/ September 5 2007
- Honda http://automobiles.honda.com/fcx-clarity/specifications.aspx October 7 2011
- Jurnecka, R. Motor Trend “Like we said: Honda FCX fuel cell vehicle coming in 2008,” http://blogs.motortrend.com/like-we-said-honda-fcx-fuelcell-vehicle-coming-in-2008-586.html May 11 2007
- Fuel Cell Today http://www.fuelcelltoday.com/media/pdf/archive/Article_516_FordFocusFCV.pdf
- Pukrushpan, J.T. Peng, H. Stefanopoulou, A.G. “Control-oriented modeling and analysis for automotive fuel cell systems.” J. Dyn. Sys. Meas, Control 126 14 25 2004 10.1115/1.1648308
- Edmunds http://www.edmunds.com/ford/fusion/2012/?sub=sedan