This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling

Journal Article
2012-01-0333
ISSN: 2167-4191, e-ISSN: 2167-4205
Published April 16, 2012 by SAE International in United States
Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling
Sector:
Citation: Teng, H., "Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling," SAE Int. J. Alt. Power. 1(1):79-88, 2012, https://doi.org/10.4271/2012-01-0333.
Language: English

References

  1. Linden, D. Reddy, T.B. Handbook of Batteries 3 rd McGraw-Hill 2002
  2. Brodd, R.J. “Lithium-Ion Cell Production Processes,” Advances in Lithium-Ion Batteries Van Schalkwijk, W.A. Scrosati, B. Kluwer Academic / Plenum Publishers 2002
  3. Newman, J. Thomas-Alyea, K.E. Electrochemical Systems 3rd John Wiley & Sons, Inc. 2004
  4. Randles, J.E. “Kinetics of rapid electrode reactions.” Discuss. Faraday Soc. 1 11 1947
  5. Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications Kluwer Academic / Plenum Publishers 1999
  6. Taylor, S.R. Gileadi, E. “Physical Interpretation of the Warburg Impedence,” Corrosion Science 51 9 664 671 1995
  7. Lasia, A. “Electrochemical Impedance Spectroscopy and Its Applications,” Modern Aspects of Electrochemistry 32 143 248 1999
  8. Buller, S. Impedance-Based Simulation Models for Energy Storage Devices in Advanced Automotive Power Systems Dissertation RWTH Aachen University 2003
  9. Dubarry, M. Liaw, B.Y. “Development of a Universal Modeling Tool for Rechargeable Lithium Batteries,” Journal of Power Sources 174 856 860 2007
  10. Sawai, K. Yamato, R. Ohzuku, T. “Impedance Measurements on Lithium-Ion Battery Consisting of Li[Li 1/3 Ti 5/3 ]O 4 and LiCo 1/2 Ni 1/2 O 2 ,” Electrochimica Acta 51 1651 1655 2006
  11. Seki, S. Kihira, N. Mita, Y. Kobayashi, T. Takei, K. Ikeya, T. Miyashiro, H. Terada, N. “AC Impedance Study of High-Power Lithium-Ion Secondary Batteries - Effect of Battery Size,” J. of Electrochemical Society 158 A163 166 2011
  12. Hussein, A.A. Batarseh, I. “An Overview of Generic Battery Models,” IEEE Power and Energy Society General Meeting San Diego, CA July 24 29 2011
  13. ThermoAnalytics, Inc. “Battery Modeling for HEV Simulation,” http://www.thermoanalytics.com
  14. Unnewehr, L. E. Nasar, S. A. Electric Vehicle Technology John Wiley 1982
  15. Shepherd, C.M. “Design of Primary and Secondary Cells - II. An Equation Describing Battery Discharge,” J. Electrochemical Society 112 657 664 1965
  16. Plett, G.L. “Extended Kalman Filtering for Battery Management Systems of LiPB-based HEV Battery Packs Part 2. Modeling and Identification,” J. Power Sources 134 262 274 2004
  17. Idaho National Engineering & Environmental Laboratory PNGV Battery Test Manual 2001
  18. Idaho National Engineering & Environmental Laboratory Battery Test Manual for Plug-In Hybrid Electric Vehicles 2010
  19. USCAR USABC Manuals http://www.uscar.org/guest/tlc/3/Energy-Storage-TLC
  20. Holman, J.P. Heat Transfer 9 th McGraw-Hill 2002
  21. Teng, H. Ma, Y. Yeow, K. Thelliez, M. “Thermal Characterization of a Li-ion Battery Module Cooled through Aluminum Heat-Sink Plates,” SAE Int. J. of Passeng. Cars - Mech. Syst. 4 3 1331 1342 2011 10.4271/2011-01-2248
  22. Zolot, M.D. Kelly, K. Keyser, M. Hieronymus, A. “Thermal Evaluation of the Honda Insight Battery Pack,” National Renewable Energy Laboratory Technical Report No.NREL/CP-540-30095 June 2001
  23. Zolot, M. Pesaran, A. Mihalic, M. “Thermal Evaluation of Toyota Prius Battery Pack,” SAE Technical Paper 2002-01-1962 2002 10.4271/2002-01-1962

Cited By