This content is not included in your SAE MOBILUS subscription, or you are not logged in.

On an Efficient Simulation Approach for Estimating the Cooling Performance of Automotive Vented Disc Brakes under the Scenario of Emergency Braking

Journal Article
15-15-01-0002
ISSN: 2770-3460, e-ISSN: 2770-3479
Published March 07, 2022 by SAE International in United States
On an Efficient Simulation Approach for Estimating the Cooling
                    Performance of Automotive Vented Disc Brakes under the Scenario of Emergency
                    Braking
Sector:
Citation: Zhang, Y., Dou, R., Yuan, H., and Li, J., "On an Efficient Simulation Approach for Estimating the Cooling Performance of Automotive Vented Disc Brakes under the Scenario of Emergency Braking," SAE Int. J. Passeng. Veh. Syst. 15(1):17-32, 2022, https://doi.org/10.4271/15-15-01-0002.
Language: English

References

  1. Stephens , A. , Watkins , S. , and Dixon , C. Aerodynamic Testing of a Vented Disc Brake SAE Technical Paper 2003-01-0932 2003 https://doi.org/10.4271/2003-01-0932
  2. Schuetz , T. Cooling Analysis of a Passenger Car Disk Brake SAE Technical Paper 2009-01-3049 2009 https://doi.org/10.4271/2009-01-3049
  3. Barigozzi , G. , Perdichizzi , A. , and Donati , M. Combined Experimental and CFD Investigation of Brake Discs Aero-thermal Performances SAE Int. J. Passeng. Cars - Mech. Syst. 1 1 2009 1194 1201 https://doi.org/10.4271/2008-01-2550
  4. Mukutmoni , D. , Jelic , S. , Han , J. , and Haffey , M. Role of Accurate Numerical Simulation of Brake Cooldown in Brake Design Process SAE Int. J. Passeng. Cars - Mech. Syst. 5 4 2012 1199 1210 https://doi.org/10.4271/2012-01-1811
  5. Bhambare , K. , Haffey , M. , and Jelic , S. Brake Duty Cycle Simulation for Thermal Design of Vehicle Braking System SAE Technical Paper 2013-36-0015 2013 https://doi.org/10.4271/2013-36-0015
  6. Yigit , S. , Penther , P. , Wuchatsch , J. , and Werner , F. A Monolithic Approach to Simulate the Cooling Behavior of Disk Brakes SAE Int. J. Passeng. Cars - Mech. Syst. 6 3 2013 1430 1437 https://doi.org/10.4271/2013-01-2046
  7. Alves , J.C.L. , Maruyama , F. , Volpe , L.D. , Buscariolo , F.F. et al. Virtual Downhill Brake Cooling Evaluation Methodology SAE Technical Paper 2015-36-0159 2015 https://doi.org/10.4271/2015-36-0159
  8. Sun , S. , Liao , G. , Fu , Q. , Lu , K. et al. A Coupled Approach to Truck Drum Brake Cooling SAE Technical Paper 2015-01-2901 2015 https://doi.org/10.4271/2015-01-2901
  9. Palmer , E. and Jansen , W. Development of a High Fidelity CAE Model for Predicting Brake System Temperatures SAE Technical Paper 2017-01-0145 2017 https://doi.org/10.4271/2017-01-0145
  10. Hunt , W. , Price , A. , Jelic , S. , Staelens , V. et al. A Coupled Simulation Approach to Race Track Brake Cooling for a GT3 Race Car Wiedemann , J. Progress in Vehicle Aerodynamics and Thermal Management: FKFS Conference Cham Springer 2017
  11. Alves , J.C.L. , Maruyama , F.K. , Volpe , L.J.D. , Buscariolo , F.F. et al. Performance Comparison of Different Chamber Designs for Ventilated Disk Brake SAE Technical Paper 2017-36-0240 2017 https://doi.org/10.4271/2017-36-0240
  12. Eroglu , S. , Duman , I. , Ergenc , A. , and Yanarocak , R. Thermal Analysis of Heavy Duty Engine Exhaust Manifold Using CFD SAE Technical Paper 2016-01-0648 2016 https://doi.org/10.4271/2016-01-0648
  13. Piovano , A.A. , Lorefice , L.M. , and Scantamburlo , G. Modelling of Car Cabin Thermal Behaviour during Cool Down, Using an Advanced CFD/Thermal Approach SAE Technical Paper 2016-01-0213 2016 https://doi.org/10.4271/2016-01-0213
  14. Hobeika , T. , Sebben , S. , and Landstrom , C. Investigation of the Influence of Tyre Geometry on the Aerodynamics of Passenger Cars SAE Int. J. Passeng. Cars - Mech. Syst. 6 1 2013 316 325 https://doi.org/10.4271/2013-01-0955
  15. Hobeika , T. and Sebben , S. CFD Investigation on Wheel Rotation Modelling Journal of Wind Engineering and Industrial Aerodynamics 174 2018 241 251 https://doi.org/10.1016/j.jweia.2018.01.005
  16. Qian , C. Aerodynamic Shape Optimization Using CFD Parametric Model with Brake Cooling Application SAE Technical Paper 2002-01-0599 2002 https://doi.org/10.4271/2002-01-0599
  17. Palmer , E. , Mishra , R. , Fieldhouse , J. , and Layfield , J. Analysis of Air Flow and Heat Dissipation from a High Performance GT Car Front Brake SAE Technical Paper 2008-01-0820 2008 https://doi.org/10.4271/2008-01-0820
  18. Mason , S. The Effects of Rotational Inertia on Automotive Acceleration 2014 https://hpwizard.com/rotational-inertia.html
  19. Sun , H. Sensitivity Study on Brake Cooling Performance SAE Technical Paper 2006-01-0694 2006 https://doi.org/10.4271/2006-01-0694
  20. Vdovin , A. , Gustafsson , M. , and Sebben , S. A Coupled Approach for Vehicle Brake Cooling Performance Simulations International Journal of Thermal Sciences 132 2018 257 266 https://doi.org/10.1016/j.ijthermalsci.2018.05.016
  21. Talati , F. and Jalalifar , S. Analysis of Heat Conduction in a Disk Brake System Heat and Mass Transfer 45 8 2009 1047 https://doi.org/10.1007/s00231-009-0476-y
  22. Belhocine , A. and Bouchetara , M. Thermo-Mechanical Stress Analysis of Disc Brake Rotor International Journal of Vehicle Structures and Systems 5 2013 15 https://doi.org/10.4273/ijvss.5.1.03
  23. Belhocine , A. and Omar , W.Z.W. CFD Analysis of the Brake Disc and the Wheel House through Air Flow: Predictions of Surface Heat Transfer Coefficients (STHC) during Braking Operation Journal of Mechanical Science and Technology 32 1 2018 481 490 https://doi.org/10.1007/s12206-017-1249-z
  24. SAE International 2017 https://doi.org/10.4271/J2966_201704

Cited By