This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimal Design of Continuously Variable Power-Split Transmissions for the Wind Energy Conversion System

Journal Article
13-01-02-0006
ISSN: 2640-642X, e-ISSN: 2640-6438
Published August 11, 2020 by SAE International in United States
Optimal Design of Continuously Variable Power-Split Transmissions for the Wind Energy Conversion System
Sector:
Citation: Aittaleb, A., Sallaou, M., and Zaghar, H., "Optimal Design of Continuously Variable Power-Split Transmissions for the Wind Energy Conversion System," SAE J. STEEP 1(2):103-113, 2020, https://doi.org/10.4271/13-01-02-0006.
Language: English

References

  1. Mangialardi , L. and Mantriota , G. Dynamic behaviour of wind power systems equipped with automatically regulated continuously variable transmission Renewable Energy 7 2 185 203 1996
  2. Kanellos , F.D. , Papathanassiou , S.A. , and Hatziargyriou , N.D. Dynamic Analysis of a Variable Speed Wind Turbine Equipped with a Voltage Source ac/dc/ac Converter Interface and a Reactive Current Control Loop Édité par IEEE. 10th Mediterranean Electrotechnical Conference (MELECON) Mediterranean 2000 986 989 http://doi.org/10.1109/MELCON.2000.879698
  3. Zhao , X. and Maißer , P. A Novel Power Splitting Drive Train for Variable Speed Wind Power Generators Renewable Energy 28 2001 2011 2003
  4. Mihailidis , A. , Karaoglanidis , G. , and Nerantzis , I. A CVT System for Wind Energy Converters Proceedings of the 2nd International Conference “Power Transmissions” Novi Sad 2006 411 416
  5. Idan , M. and Lior , D. Continuously Variable Speed Wind Turbine: Transmission Concept and Robust Control Wind Engineering 24 3 151 167 2000
  6. Rehfeldt , K.
  7. Mangialardi , L. and Mantriota , G. The Advantages of Using Continuously Variable Transmissions in Wind Power Systems Renewable Energy 2 3 201 209 1992
  8. Rybak , S.C. 1981 575 588
  9. Lindley , D. The 250 kW and 3 MW Wind Turbines on Burgar Hill, Orkney Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering 198 3 149 160 https://doi.org/10.1243/PIME_PROC_1984_198_022_02
  10. Hall , J.F. , Mecklenborg , C.A. , Chen , D. , and Pratap , S.B. Wind Energy Conversion with a Variable-Ratio Gearbox: Design and Analysis Renewable Energy 36 1075 1080 2011
  11. Hall , J.F. and Chen , D. Performance of a 100 kW Wind Turbine with a Variable Ratio Gearbox Renewable Energy 44 261 266 2012
  12. Jelaska , D. , Podrug , S. , and Perku , M. A Novel Hybrid Transmission for Variable Speed Wind Turbines Renewable Energy 83 78 84 2015
  13. Mantriota , G. Power Split Transmissions for Wind Energy Systems Mechanism and Machine Theory 117 160 174 2017
  14. Bottiglione , F. , Mantriota , G. , and Valle , M. Power-Split Hydrostatic Transmissions for Wind Energy Systems Energies 11 3369 2018 https://doi.org/10.3390/en11123369
  15. Petković , D. et al. Adaptive Neuro-Fuzzy Maximal Power Extraction of Wind Turbine with Continuously Variable Transmission Energy 64 868 874 2013 http://doi.org/10.1016/j.energy.2013.10.094
  16. Pao , L.Y. and Johnson , K.E. A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms American Control Conference, 2009. ACC ’09 St. Louis, MO 2009 2076 2089
  17. Papaelias , M. , Pedro Garcia , F. , and Alexander Karyotakis , M. Non-Destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets First Butterworth-Heinemann (BH) 2019 9780128097472
  18. Petković , D. , Ćojbašič , Ž. , and Nikolić , V. Adaptive Neuro-Fuzzy Approach for Wind Turbine Power Coefficient Estimation Renewable and Sustainable Energy Reviews 28 191 195 2013
  19. Aguglia , D. , Viarouge , P. , Wamkeue , R. , and Cros , J. Determination of Fault Operation Dynamical Constraints for the Design of Wind Turbine DFIG Drives Mathematics and Computers in Simulation 81 2 252 262 2010
  20. Hansen , A.D. , Jauch , C. , Sørensen , P. , Iov , F. et al. 2003
  21. Velicu , R. On the Mechanical Efficiency of Speed Multiplicators for Wind Turbines Annals of the ORADEA University 1078 1081 2007
  22. Henriot , G. Traité théorique et pratique des engrenages 1 Paris Dunod 1979
  23. Miler , D. , Žeželj , D. , Lonˇcar , A. , and Vuˇckovi « , K. Multi-Objective Spur Gear Pair Optimization Focused on Volume and Efficiency Mechanism and Machine Theory 125 185 195 2018
  24. ISO Standard 6336:2006 2006
  25. Kapelevich , A.L. and Ananiev , V.M. Gear Transmission Density Proceedings of the ASME, International Design Engineering Technical Conferences 2011 Washington, DC, USA https://doi.org/10.1115/DETC2011-47021
  26. Aittaleb , A. , Chaaba , A. , and Sallaou , M. On the Mechanical Efficiency Assessment of Epicyclic Gear Trains: Analytic Formulas and an Easy Algorithm SAE Technical Paper 2014-01-2888 2014 https://doi.org/10.4271/2014-01-2888

Cited By