This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Enhancing Ride Comfort and Stability of a Large Van Using an Improved Semi-active Stability Augmentation System

Journal Article
10-06-04-0026
ISSN: 2380-2162, e-ISSN: 2380-2170
Published August 12, 2022 by SAE International in United States
Enhancing Ride Comfort and Stability of a Large Van Using an Improved
                    Semi-active Stability Augmentation System
Sector:
Citation: Rajasekharan Unnithan, A. and Subramaniam, S., "Enhancing Ride Comfort and Stability of a Large Van Using an Improved Semi-active Stability Augmentation System," SAE Int. J. Veh. Dyn., Stab., and NVH 6(4):385-403, 2022, https://doi.org/10.4271/10-06-04-0026.
Language: English

References

  1. Savaresi , S.M. , Poussot-Vassal , C. , Spelta , C. et al. Introduction and Motivations Savaresi , S.M. , Poussot-Vassal , C. , Spelta , C. , Sename , O. et al. Semi-Active Suspension Control for Vehicles 1st ed. Oxford, UK Butterworth Heinemann 2010 1 13 https://doi.org/10.1016/B978-0-08-096678-6.00001-8
  2. Karnopp , D. , Crosby , M.J. , and Harwood , R.A. Vibration Control Using Semi-Active Force Generators ASME J. Eng. Ind. 96 2 1974 619 626 https://doi.org/10.1115/1.3438373
  3. Wang , W. and Hou , Z. Physical Parametric Model of an Automotive Electrohydraulic Semiactive Damper IEEE Trans. Veh. Technol. 68 6 2019 5356 5365 https://doi.org/10.1109/TVT.2019.2907523
  4. Shehata Gad , A. Preview Model Predictive Control Controller for Magnetorheological Damper of Semi-Active Suspension to Improve Both Ride and Handling SAE Int. J. Veh. Dyn. Stab., and NVH 4 3 2020 305 326 https://doi.org/10.4271/10-04-03-0021
  5. Tang , X. , Ning , D. , Du , H. , Li , W. et al. Takagi-Sugeno Fuzzy Model-Based Semi-Active Control for the Seat Suspension with an Electrorheological Damper IEEE Access 8 2020 98027 98037 https://doi.org/10.1109/ACCESS.2020.2995214
  6. Zhang , X.J. , Ahmadian , M. , and Guo , K.H. On the Benefits of Semi-Active Suspensions with Inerters Shock Vib. 19 3 2012 257 272 https://doi.org/10.3233/SAV-2011-0628
  7. Jiang , D. , Li , J. , Li , X. , Deng , C. et al. Modeling Identification and Control of a 6-DOF Active Vibration Isolation System Driving by Voice Coil Motors with a Halbach Array Magnet J. Mech. Sci. Technol. 34 2 2020 617 630 https://doi.org/10.1007/s12206-019-1208-y
  8. Zhang , H. , Liu , J. , Wang , E. , Rakheja , S. et al. Nonlinear Dynamic Analysis of a Skyhook-Based Semi-Active Suspension System With Magneto-Rheological Damper IEEE Trans. Veh. Technol. 67 11 2018 10446 10456 https://doi.org/10.1109/TVT.2018.2870325
  9. Liu , C. , Chen , L. , Yang , X. , Zhang , X. et al. General Theory of Skyhook Control and Its Application to Semi-Active Suspension Control Strategy Design IEEE Access 7 2019 101552 101560 https://doi.org/10.1109/ACCESS.2019.2930567
  10. Li , Z. , Sun , W. , and Gao , H. Road-Holding-Oriented Control and Analysis of Semi-Active Suspension Systems J. Dyn. Syst. Meas. Control 141 10 2019 101010 https://doi.org/10.1115/1.4043764
  11. Papaioannou , G. , Koulocheris , D. , and Velenis , E. Skyhook Control Strategy for Vehicle Suspensions Based on the Distribution of the Operational Conditions Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 235 10-11 2021 2776 2790 https://doi.org/10.1177/09544070211006517
  12. Kaldas , M. , Soliman , A. , Abdallah , S. , and Amien , F. Robustness Analysis of the Model Reference Control for Active Suspension System SAE Int. J. Veh. Dyn. Stab., and NVH 4 3 2020 165 177 https://doi.org/10.4271/10-04-02-0012
  13. Kaldas , M. , Soliman , A. , Abdallah , S. , and Amien , F. Model Reference Control for Active Suspension System SAE Technical Paper 2019-01-0165 2019 https://doi.org/10.4271/2019-01-0165
  14. Wu , J. , Zhou , H. , Liu , Z. , and Gu , M. Ride Comfort Optimization via Speed Planning and Preview Semi-Active Suspension Control for Autonomous Vehicles on Uneven Roads IEEE Trans. Veh. Technol. 69 8 2020 8343 8355 https://doi.org/10.1109/TVT.2020.2996681
  15. Yang , L. , Wang , R. , Ding , R. , Liu , W. et al. Investigation on the Dynamic Performance of a New Semi-Active Hydro-Pneumatic Inerter-Based Suspension System with MPC Control Strategy Mech. Syst. Signal Process. 154 301 2021 107569 https://doi.org/10.1016/j.ymssp.2020.107569
  16. Liu , S. , Zheng , T. , Zhao , D. , Hao , R. , and Yang , M. Strongly Perturbed Sliding Mode Adaptive Control of Vehicle Active Suspension System Considering Actuator Nonlinearity Veh. Syst. Dyn. 60 597 616 2022 https://doi.org/10.1080/00423114.2020.1840598
  17. Zhang , H. , Zheng , X. , Li , H. , Wang , Z. et al. Active Suspension System Control with Decentralized Event-Triggered Scheme IEEE Trans. Ind. Electron. 67 12 2020 10798 10808 https://doi.org/10.1109/TIE.2019.2958306
  18. Li , W. , Du , H. , Ning , D. , Li , W. et al. Event-Triggered H∞ Control for Active Seat Suspension Systems Based on Relaxed Conditions for Stability Mech. Syst. Signal Process. 149 2021 107210 https://doi.org/10.1016/j.ymssp.2020.107210
  19. Brezas , P. and Smith , M.C. Linear Quadratic Optimal and Risk-Sensitive Control for Vehicle Active Suspensions IEEE Trans. Control Syst. Technol. 22 2 2014 543 556 https://doi.org/10.1109/TCST.2013.2253556
  20. Yan , G. , Fang , M. , and Xu , J. Analysis and Experiment of Time-Delayed Optimal Control for Vehicle Suspension System J. Sound Vib. 446 1239 2019 144 158 https://doi.org/10.1016/j.jsv.2019.01.015
  21. Huang , W. , Zhao , J. , Yu , G. , and Wong , P.K. Intelligent Vibration Control for Semiactive Suspension Systems without Prior Knowledge of Dynamical Nonlinear Damper Behaviors Based on Improved Extreme Learning Machine IEEE/ASME Trans. Mechatronics 26 4 2021 2071 2079 https://doi.org/10.1109/TMECH.2020.3031840
  22. Zhu , Y. , Bian , X. , Su , L. , Gu , C. et al. Ride Comfort Improvement with Preview Control Semi-active Suspension System Based on Supervised Deep Learning SAE Int. J. Veh. Dyn. Stability, NVH 5 1 2021 31 44 https://doi.org/10.4271/10-05-01-0003
  23. Maher , D. and Young , P. An Insight into Linear Quarter Car Model Accuracy Veh. Syst. Dyn. 49 3 2011 463 480 https://doi.org/10.1080/00423111003631946
  24. Na , J. , Huang , Y. , Pei , Q. , Wu , X. et al. Active Suspension Control of Full-Car Systems without Function Approximation IEEE/ASME Trans. Mechatronics 25 2 2020 779 791 https://doi.org/10.1109/TMECH.2019.2962602
  25. Tudon-Martinez , J.C. , Vivas-Lopez , C.A. , Hernandez-Alcantara , D. , Morales-Menendez , R. et al. Full Vehicle Combinatory Efficient Damping Controller: Experimental Implementation IEEE/ASME Trans. Mechatronics 23 1 2018 377 388 https://doi.org/10.1109/TMECH.2017.2785127
  26. Li , Z. , Sun , W. , and Gao , H. Energy-Driven-Damper (EDD): Comfort-Oriented Semiactive Suspensions Optimized from an Energy Perspective IEEE Trans. Control Syst. Technol. 28 5 2020 2069 2076 https://doi.org/10.1109/TCST.2019.2954793
  27. Stevens , B.L. , Lewis , F.L. , and Johnson , E.N. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems Hoboken, NJ John Wiley & Sons, Inc 2015 https://doi.org/10.1002/9781119174882
  28. Nandong , J. Double-Loop Control Structure for Oscillatory Systems: Improved PID Tuning via Multi-Scale Control Scheme 2015 10th Asian Control Conference (ASCC) Kota Kinabalu, Malaysia 2015 1 1 6 https://doi.org/10.1109/ASCC.2015.7244476
  29. Hudha , K. , Jamaluddin , H. , and Samin , P.M. Disturbance Rejection Control of a Light Armoured Vehicle Using Stability Augmentation Based Active Suspension System Int. J. Heavy Veh. Syst. 15 2-4 2008 152 169 https://doi.org/10.1504/IJHVS.2008.022240
  30. Trikande , M. , Karve , N. , Anand Raj , R. , Jagirdar , V. et al. Semi-Active Vibration Control of an 8x8 Armored Wheeled Platform J. Vib. Control 24 2 2018 283 302 https://doi.org/10.1177/1077546316638199
  31. Xu , G. and Zhang , N. Characteristic Analysis of Roll and Pitch Independently Controlled Hydraulically Interconnected Suspension SAE Int. J. Commer. Veh. 7 1 2014 170 176 https://doi.org/10.4271/2014-01-0870
  32. Taghavifar , H. and Rakheja , S. Multi-objective Optimal Robust Seat Suspension Control of Off-Road Vehicles in the Presence of Disturbance and Parametric Uncertainty Using Metaheuristics IEEE Trans. Intell. Veh. 5 3 2019 372 384 https://doi.org/10.1109/TIV.2019.2960927
  33. Ley-Rosas , J.J. , González-Jiménez , L.E. , Loukianov , A.G. , and Ruiz-Duarte , J.E. Observer Based Sliding Mode Controller for Vehicles with Roll Dynamics J. Franklin Inst. 356 5 2019 2559 2581 https://doi.org/10.1016/j.jfranklin.2018.11.031
  34. Er , M.J. and Mandal , S. A Survey of Adaptive Fuzzy Controllers: Nonlinearities and Classifications IEEE Trans. Fuzzy Syst. 24 5 2016 1095 1107 https://doi.org/10.1109/TFUZZ.2015.2501439
  35. Wang , H. , Lu , Y. , Tian , Y. , and Christov , N. Fuzzy Sliding Mode Based Active Disturbance Rejection Control for Active Suspension System Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 234 2-3 2020 449 457 https://doi.org/10.1177/0954407019860626
  36. Kaldas , M. , Çalişkan , K. , Henze , R. , and Küçükay , F. Rule Optimized Fuzzy Logic Controller for Full Vehicle Semi-Active Suspension SAE Int. J. Passeng. Cars - Mech. Syst. 6 1 2013 332 344 https://doi.org/10.4271/2013-01-0991
  37. Wu , D. and Mendel , J.M. Recommendations on Designing Practical Interval Type-2 Fuzzy Systems Eng. Appl. Artif. Intell. 85 2019 182 193 https://doi.org/10.1016/j.engappai.2019.06.012
  38. Wu , D. , and Mendel , J.M. Designing Practical Interval Type-2 Fuzzy Logic Systems Made Simple IEEE Int. Conf. Fuzzy Syst. 800 807 2014 https://doi.org/10.1109/FUZZ-IEEE.2014.6891534
  39. Huang , J. , Ri , M. , Wu , D. , and Ri , S. Interval Type-2 Fuzzy Logic Modeling and Control of a Mobile Two-Wheeled Inverted Pendulum IEEE Trans. Fuzzy Syst. 26 4 2018 2030 2038 https://doi.org/10.1109/TFUZZ.2017.2760283
  40. Qi , H. , Zhang , B. , Zhang , N. , Zheng , M. et al. Enhanced Lateral and Roll Stability Study for a Two-Axle Bus via Hydraulically Interconnected Suspension Tuning SAE Int. J. Veh. Dyn. Stab., and NVH 3 1 2018 5 18 https://doi.org/10.4271/10-03-01-0001
  41. El-Menyar , A. et al. Epidemiology, Causes and Prevention of Car Rollover Crashes with Ejection Ann. Med. Health Sci. Res. 4 4 2014 495 https://doi.org/10.4103/2141-9248.139279
  42. Mamdani , E.H. and Assilian , S. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller International Journal of Man-Machine Studies 7 1975 1 13 https://doi.org/10.1016/S0020-7373(75)80002-2
  43. Wu , D. Twelve Considerations in Choosing between Gaussian and Trapezoidal Membership Functions in Interval Type-2 Fuzzy Logic Controllers 2012 IEEE International Conference on Fuzzy Systems Tianjin, China 2012 1 8 https://doi.org/10.1109/FUZZ-IEEE.2012.6251210
  44. D’Alterio , P. , Garibaldi , J.M. , John , R.I. , and Pourabdollah , A. Constrained Interval Type-2 Fuzzy Sets IEEE Trans. Fuzzy Syst. 29 5 2021 1212 1225 https://doi.org/10.1109/TFUZZ.2020.2970911
  45. Mendel , J.M. , Hagras , H. , Tan , W.W. , Melek , W.W. et al. Introduction to Type-2 Fuzzy Logic Control Hoboken, NJ John Wiley & Sons, Inc. 2014 https://doi.org/10.1002/9781118886540
  46. Raj , R.A. , Kumar , S.S. , and Trikande , M.W. Experimental Evaluation of Fuzzy Controller for Magnetorheological Damper Semi-Active Suspension System 2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES) Kollam, India 2017 1 6 https://doi.org/10.1109/SPICES.2017.8091309
  47. Zhou , H. , Ying , H. , and Zhang , C. Effects of Increasing the Footprints of Uncertainty on Analytical Structure of the Classes of Interval Type-2 Mamdani and TS Fuzzy Controllers IEEE Trans. Fuzzy Syst. 27 9 2019 1881 1890 https://doi.org/10.1109/TFUZZ.2019.2892354
  48. Wu , D. and Nie , M. Comparison and Practical Implementation of Type-Reduction Algorithms for Type-2 Fuzzy Sets and Systems Proc. IEEE Int. Conf. Fuzzy Syst 2011 2131 2138 https://doi.org/10.1109/fuzzy.2011.6007317
  49. Mendel , J.M. Uncertain Rule-Based Fuzzy Systems Cham Springer International Publishing 2017 https://doi.org/10.1007/978-3-319-51370-6
  50. Ang , K.H. , Chong , G. , and Li , Y. PID Control System Analysis, Design, and Technology IEEE Trans. Control Syst. Technol. 13 4 2005 559 576 https://doi.org/10.1109/TCST.2005.847331

Cited By