This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modeling the Effect of Foam Density and Strain Rate on the Compressive Response of Polyurethane Foams

Journal Article
05-11-02-0014
ISSN: 1946-3979, e-ISSN: 1946-3987
Published May 08, 2018 by SAE International in United States
Modeling the Effect of Foam Density and Strain Rate on the Compressive Response of Polyurethane Foams
Sector:
Citation: Kirpluks, M., Cabulis, U., Andersons, J., Japins, G. et al., "Modeling the Effect of Foam Density and Strain Rate on the Compressive Response of Polyurethane Foams," SAE Int. J. Mater. Manf. 11(2):131-138, 2018, https://doi.org/10.4271/05-11-02-0014.
Language: English

References

  1. Billotto , F. , Mirdamadi , M. , and Pearson , B. Design, Application Development, and Launch of Polyurethane Foam Systems in Vehicle Structures SAE Technical Paper 2003-01-0333 2003 10.4271/2003-01-0333
  2. Faruk , O. , Sain , M. , Farnood , R. , Pan , Y. et al. Development of Lignin and Nanocellulose Enhanced Bio PU Foams for Automotive Parts J. Polym. Environ. 22 279 288 2014 10.1007/s10924-013-0631-x
  3. Avalle , M. , Belingardi , G. , and Montanini , R. Characterization of Polymeric Structural Foams under Compressive Impact Loading by Means of Energy-Absorption Diagram Int. J. Impact Eng. 25 455 472 2001 10.1016/S0734-743X(00)00060-9
  4. Fremgen , C. , Mkrtchyan , L. , Huber , U. , and Maier , M. Modeling and Testing of Energy Absorbing Lightweight Materials and Structures for Automotive Applications Sci. Technol. Adv. Mater. 6 883 888 2005 10.1016/j.stam.2005.07.007
  5. Lanzerath , H. and Tragsdorf , C. Body Lightweight Design and Scalability with Structural Foam Solutions SAE Int. J. Mater. Manf. 6 2 232 241 2013 10.4271/2013-01-0669
  6. Nagy , A. , Ko , W.L. , and Lindholm , U.S. Mechanical Behavior of Foamed Materials under Dynamic Compression J. Cell. Plast. 10 127 134 1974 10.1177/0021955X7401000306
  7. Rusch , K.C. Energy-Absorbing Characteristics of Foamed Polymers J. Appl. Polym. Sci. 14 1133 1147 1969 10.1002/app.1970.070140603
  8. Schwaber , D.M. and Meinecke , E.A. Energy Absorption in Polymeric Foams. II. Prediction of Impact Behavior from Instron Data for Foams with Rate-Dependent Modulus J. Appl. Polym. Sci. 15 2381 2393 1971 10.1002/app.1971.070151006
  9. Sherwood , J.A. and Frost , C.C. Constitutive Modeling and Simulation of Energy Absorbing Polyurethane Foam under Impact Loading Polym. Eng. Sci. 32 1138 1146 1992 10.1002/pen.760321611
  10. Zhang , J. , Lin , Z. , Wrong , A. , Kikuchi , N. et al. Constitutive Modeling and Material Characterization of Polymeric Foams J. Eng. Mater. Technol. 119 284 291 1997 10.1115/1.2812258
  11. Peroni , L. , Avalle , M. , and Peroni , M. The Mechanical Behaviour of Polyurethane Foam: Multiaxial and Dynamic Behaviour Int. J. Mater. Eng. Innov. 1 154 174 2009 10.1504/IJMATEI.2009.029362
  12. Jeong , K.Y. , Cheon , S.S. , and Munshi , M.B. A Constitutive Model for Polyurethane Foam with Strain Rate Sensitivity J. Mech. Sci. Technol. 26 2033 2038 2012 10.1007/s12206-12-0509-1
  13. Apostol , D.A. and Constantinescu , D.M. Temperature and Speed of Testing Influence on the Densification and Recovery of Polyurethane Foams Mech. Time-Depend. Mater. 17 111 136 2013 10.1007/s11043-012-9179-8
  14. Shivakumar , N. , Deb , A. , Chou , C. , and Chittappa , H. A Methodology for Characterization of the Strain Rate-Dependent Behavior of PU Foam SAE Int. J. Mater. Manf. 7 3 514 519 2014 10.4271/2014-01-0539
  15. Gibson , L.J. and Ashby , M.F. Cellular Solids: Structure and Properties Cambridge Cambridge University Press 1997 9780521495608
  16. Liu , Q. and Subhash , G. A Phenomenological Constitutive Model for Foams under Large Deformations Polym. Eng. Sci. 44 463 473 2004 10.1002/pen.20041
  17. Liu , Q. , Subhash , G. , and Gao , X.-L. A Parametric Study on Crushability of Open-Cell Structural Polymeric Foams J. Porous Mater. 12 233 248 2005 10.1007/s10934-005-1652-1
  18. Avalle , M. , Belingardi , G. , and Ibba , A. Mechanical Models of Cellular Solids: Parameters Identification from Experimental Tests Int. J. Impact Eng. 34 3 27 2007 10.1016/j.ijimpeng.2006.06.012
  19. Andersons , J. , Kirpluks , M. , Stiebra , L. , and Cabulis , U. The Effect of a Circular Hole on the Tensile Strength of Neat and Filled Rigid PUR Foams Theor. Appl. Fract. Mech. 78 8 14 2015 10.1016/j.tafmec.2015.05.001
  20. Kurauchi , T. , Sato , N. , Kamigaito , O. , and Komatsu , N. Mechanism of High Energy Absorption by Foamed Materials-Foamed Rigid Polyurethane and Foamed Glass J. Mater. Sci. 19 871 880 1984 10.1007/BF00540457
  21. Goods , S.H. , Neuschwanger , C.L. , Henderson , C.C. , and Skala , D.M. Mechanical Properties of CRETE, a Polyurethane Foam J. Appl. Polym. Sci. 68 1045 1055 1998 10.1002/(SICI)1097-4628(19980516)68:7<1045::AID-APP2>3.0.CO;2-F
  22. Cabulis , U. , Sevastyanova , I. , Andersons , J. , and Beverte , I. Rapeseed Oil-Based Rigid Polyisocyanurate Foams Modified with Nanoparticles of Various Type Polimery 59 207 212 2014 10.14314/polimery.2014.207
  23. Dawson , J.R. and Shortall , J.B. The Microstructure of Rigid Polyurethane Foams J. Mater. Sci. 17 220 224 1982 10.1007/BF00809056

Cited By