This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Two-Stage Variable Compression Ratio System for Large-Bore Engines with Advanced Hydraulic Control Circuit and Mechanical Locking Device

Journal Article
03-15-02-0011
ISSN: 1946-3936, e-ISSN: 1946-3944
Published August 19, 2021 by SAE International in United States
A Two-Stage Variable Compression Ratio System for Large-Bore Engines
                    with Advanced Hydraulic Control Circuit and Mechanical Locking
                    Device
Citation: Marten, C., Pendovski, D., Pischinger, S., and Bick, W., "A Two-Stage Variable Compression Ratio System for Large-Bore Engines with Advanced Hydraulic Control Circuit and Mechanical Locking Device," SAE Int. J. Engines 15(2):247-261, 2022, https://doi.org/10.4271/03-15-02-0011.
Language: English

References

  1. International Convention for the Prevention of Marine Pollution from Ships 2013
  2. Det Norske Veritas & Germanischer Lloyd DNV & GL 2019
  3. Levander , O. Dual Fuel Engines Latest Developments MLS Hamburg 2011
  4. Marten , C. , Schlemmer-Kelling , U. , Ghetti , S. , and Methfessel , P. Variable Verdichtung bei Großmotoren Motortechnische Zeitung - MTZ 78 7-8 2017 52 57 https://doi.org/10.1007/s35146-017-0069-0
  5. Tschöke , H. , Mollenhauer , K. , and Maier , R. Handbuch Dieselmotoren 4th Wiesbaden Springer Vieweg 2018 https://doi.org/10.1007/978-3-658-07697-9
  6. Christen , D.B. IMO Tier 3: Gas and Dual Fuel Engines as a Clean and Efficient Solution CIMAC Congress Shanghai 2013
  7. Marten , C. , Ghetti , S. , Bick , W. , Thorenz , C. et al. Variable Compression Ratio Technology for Dual-Fuel Engines 29th CIMAC Congress Vancouver 2019
  8. Marten , C. , Heuser , P. , Bick , W. , Thorenz , C. et al. VCR Conrod Concept for Large Dual-Fuel Engines 2nd International Conference on Variable Compression Ratio 2019 Garmisch-Partenkirchen 2019
  9. Bergmann , D. , Marten , C. et al. VCR—Key Technology for High Efficient Dual-Fuel-Engines 1st International Conference on Variable Compression Ratio 2017 Garmisch-Partenkirchen 2017
  10. Schlemmer-Kelling , U. , Marten , C. et al. Technology Evaluation to Comply with Future Challenges in the Maritime Business 5th Large Engine Symposium 2018 Rostock 2018
  11. Nylund , I. The Development of a Variable Compression Ratio (VCR) on a Large Two-Stroke Slow-Speed Engine; The Joint Development Approach of IHI, DU and WinGD 29th CIMAC Congress Vancouver 2019
  12. Schilling , S. , Pöpperl , M. , Schulze , D. , Uhlmann , T. et al. Stepcom®—2 Step Variable Compression Ratio System Integration & Industrialization Aachen Colloquium Sustainable Mobility 2019 Aachen 2019
  13. Figer , G. , Schmidleitner , K. , Kammerdiener , T. , and Schoenbacher , M. Next-Generation High-Speed Engines—Advanced Design Features Enabling Highest Engine Efficiency 29th CIMAC Congress Vancouver 2019
  14. Schöffmann , W. et al. Variable Compression Ratio by Means of a Modular System with a Two-Stage Switchable Connecting Rod Length Motortechnische Zeitung - MTZ Worldwide 79 6 2018 40 45 https://doi.org/10.1007/s38313-018-0032-6
  15. Arens , K. et al. Dual Mode VCS—Concept Readiness 7th Aachen Colloquium China Automobile and Engine Technology 2017 Aachen 2017
  16. deGooijer , B. Gomecsys VCR Technology: Testing Results of Driving a Demo Car 2nd International Conference on Variable Compression Ratio 2019 Garmisch-Partenkirchen 2019
  17. Hirai , T. Strategic Future: Powertrain Vision for Tomorrow 38. International Vienna Motor Symposium 2017 Vienna 2017
  18. Kiga , S. et al. The New Nissan VC-Turbo with Variable Compression Ratio Motortechnische Zeitung - MTZ - Worldwide 78 11 2017 42 49 https://doi.org/10.1007/s38313-017-0115-9
  19. Mahle GmbH Zylinderkomponenten Eigenschaften, Anwendungen, Werkstoffe 2nd Wiesbaden Springer Vieweg 2015 https://doi.org/10.1007/978-3-658-09546-8
  20. Maurizi , M. and Hrdina , D. New MAHLE Steel Piston and Pin Coating System for Reduced TCO of CV Engines SAE Int. J. Commer. Veh. 9 2 2016 270 275 https://doi.org/10.4271/2016-01-8066
  21. Ronkainen , H. , Varjus , S. , and Holmberg , K. Friction and Wear Properties in Dry, Water- and Oil-Lubricated DLC against Alumina and DLC against Steel Contacts Wear 222 2 1998 120 128 https://doi.org/10.1016/S0043-1648(98)00314-7
  22. Bauer , G. and Niebergall , M. Ölhydraulik - Grundlagen, Bauelemente, Anwendungen 12th Springer Fachmedien Wiesbaden 2020 https://doi.org/10.1007/978-3-658-27027-8
  23. Findeisen , D. and Helduser , S. Ölhydraulik - Handbuch der hydraulischen Antriebe und Steuerungen 6th Berlin, Heidelberg Springer 2015 https://doi.org/10.1007/978-3-642-54909-0
  24. Plansee Holding AG 2021 https://www.plansee.com/de/werkstoffe/wolfram-schwermetall.html
  25. Buczek , K. and Lauer , S. Firing Order Optimization in FEV Virtual Engine 28th CIMAC Congress Helsinki 2016
  26. Wittek , K. 2012
  27. Wittek , K. 2006
  28. Mane , P. , Pendovski , D. , Sonnen , S. , Uhlmann , A. et al. Coupled Dynamic Simulation of Two Stage Variable Compression Ratio (VCR) Connecting Rod Using Virtual Dynamics SAE Int. J. Adv. & Curr. Prac. in Mobility 1 1 2019 38 44 https://doi.org/10.4271/2019-26-0031
  29. Mraz , S. and Bargende , M. Entwicklung eines Simulationsmodells zur Beschreibung des Betriebsverhaltens eines zweistufig laengenvariablen Pleuels Simulation and Test Springer Vieweg Wiesbaden 2018 https://doi.org/10.1007/978-3-658-20828-8-10
  30. Jesser , M. 2019
  31. Wärtsilä Finland Oy 2021 https://www.wartsila.com/docs/default-source/product-files/engines/ms-engine/product-guide-o-e-w32.pdf?utm_source=engines&utm_medium=dieselengines&utm_term=w32&utm_content=productguide&utm_campaign=msleadscoring
  32. MAN Energy Solutions Augsburg 2021 https://www.man-es.com/docs/default-source/projectguidesde_projectguidesde_files/man-l35-44df-imo-tier-iii-marine.pdf?sfvrsn=1fd31bfb_0

Cited By