This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical Study to Achieve Low Fuel Consumption and Nitrogen Oxides Emissions in a Split-Cycle Engine Adapted from the Conventional Architecture

Journal Article
03-14-02-0016
ISSN: 1946-3936, e-ISSN: 1946-3944
Published February 12, 2021 by SAE International in United States
Numerical Study to Achieve Low Fuel Consumption and Nitrogen Oxides Emissions in a Split-Cycle Engine Adapted from the Conventional Architecture
Sector:
Citation: Lacerda, A., Rodrigues de Souza, G., Brito, J., Soto, F. et al., "Numerical Study to Achieve Low Fuel Consumption and Nitrogen Oxides Emissions in a Split-Cycle Engine Adapted from the Conventional Architecture," SAE Int. J. Engines 14(2):263-275, 2021, https://doi.org/10.4271/03-14-02-0016.
Language: English

References

  1. Damiani , L. , Repetto , M. , and Prato , A.P. Improvement of Powertrain Efficiency through Energy Breakdown Analysis Appl Energy 121 252 263 2014 https://doi.org/10.1016/j.apenergy.2013.12.067
  2. Edenhofer , O. , Pichs-Madruga , R.W. , Sokona , Y. , Kadner , S. et al. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, England Cambridge University Press 2014 107
  3. Ministério da Ciência Tecnologia e Inovação Estimativas anuais de emissões de gases de efeito estufa no brasil 2a Brasília Ministério da Ciência, Tecnologia e Inovação 2014
  4. Giersdorf , J. 2013
  5. Seabra , J.E.A. , Macedo , I.C. , Chum , H.L. , Faroni , C.E. et al. Life Cycle Assessment of Brazilian Sugarcane Products: GHG Emissions and Energy Use Biofuels, Bioprod Biorefining 5 519 532 2011 https://doi.org/10.1002/bbb.289
  6. La Rovere , E.L. , Pereira , A.S. , and Simões , A.F. Biofuels and Sustainable Energy Development in Brazil World Dev 39 1026 1036 2011 https://doi.org/10.1016/j.worlddev.2010.01.004
  7. Flach , B. , Lieberz , S. , Rondon , M. , Williams , B. et al. EU-28 Biofuels Annual 2016 Glob Agric Inf Netw 42 2016
  8. Reuters 2017
  9. Automotores , A.N. , dos , F. , and de , V. Anuário da indústria automobilística brasileira 2018 São Paulo ANFAVEA 2018
  10. Bishop , J.D.K. , Martin , N.P.D. , and Boies , A.M. Cost-Effectiveness of Alternative Powertrains for Reduced Energy Use and CO2 Emissions in Passenger Vehicles Appl Energy 124 44 61 2014 https://doi.org/10.1016/j.apenergy.2014.02.019
  11. Dong , G. , Morgan , R. , and Heikal , M. A Novel Split Cycle Internal Combustion Engine with Integral Waste Heat Recovery Appl Energy 157 744 753 2015 https://doi.org/10.1016/j.apenergy.2015.02.024
  12. Daw , C.S. , Graves , R.L. , Wagner , R.M. , and Caton , J.A. 2010
  13. Foong , T.M. , Morganti , K.J. , Brear , M.J. , Da Silva , G. et al. The Octane Numbers of Ethanol Blended with Gasoline and Its Surrogates Fuel 115 727 739 2014 https://doi.org/10.1016/j.fuel.2013.07.105
  14. Budack , R. , Wurms , R. , Mendl , G. , and Heiduk , T. The New Audi 2 .0-l I4 TFSI Engine MTZ Worldw 77 16 23 2016
  15. Li , T. , Gao , Y. , Wang , J. , and Chen , Z. The Miller Cycle Effects on Improvement of Fuel Economy in a Highly Boosted, High Compression Ratio, Direct-Injection Gasoline Engine: EIVC vs. LIVC Energy Convers Manag 79 59 65 2014 https://doi.org/10.1016/j.enconman.2013.12.022
  16. Gonca , G. , Sahin , B. , Parlak , A. , Ayhan , V. et al. Application of the Miller Cycle and Turbo Charging into a Diesel Engine to Improve Performance and Decrease NO Emissions Energy 93 795 800 2015 https://doi.org/10.1016/j.energy.2015.08.032
  17. Liu , F. , Sun , B. , Zhu , H. , Hu , T. et al. Development of Performance and Combustion System of Atkinson Cycle Internal Combustion Engine Sci China Technol Sci 57 471 479 2014 https://doi.org/10.1007/s11431-014-5474-8
  18. Phillips , F. , Gilbert , I. , Pirault , J. , and Megel , M. Scuderi Split Cycle Research Engine: Overview, Architecture and Operation SAE Int J Engines 4 450 466 2011 https://doi.org/10.4271/2011-01-0403
  19. Cameron , I. and Sobiesiak , A. Combustion Characteristics of a Spark-Ignited Split-Cycle Engine Fuelled with Methane Combust Engines 161 33 41 2015
  20. Meldolesi , R. , Badain , N. , and Gilbert , I. 2011
  21. Phillips , F. 2012
  22. Branyon , D.P. and Eubanks , J.D. 2005
  23. Jackson , N.S. and Atkins , A.F. 2014
  24. Dong , G. , Morgan , R.E. , and Heikal , M.R. Thermodynamic Analysis and System Design of a Novel Split Cycle Engine Concept Energy 102 576 585 2016 https://doi.org/10.1016/j.energy.2016.02.102
  25. Coney , M.W. , Linnemann , C. , and Abdallah , H. A Thermodynamic Analysis of a Novel High Efficiency Reciprocating Internal Combustion Engine? The Isoengine Energy 29 2585 2600 2004 https://doi.org/10.1016/j.energy.2004.05.014
  26. Karuppaswamy , J. , Bhat , A. , and Gangadkar , D. Estimation of Performance Characteristics of a Split Cycle Based SI Engine SAE Technical Paper 2016-28-0090 2016 https://doi.org/10.4271/2016-28-0090
  27. Branyon , D.P. , Hoag , K.L. , and Scuderi , S.C. 2014
  28. da Silva , J.A. 2004
  29. de Souza , G.R. 2010
  30. Lattimore , T. , Herreros , J.M. , Xu , H. , and Shuai , S. Investigation of compression ratio and fuel effect on combustion and PM emissions in a DISI engine Fuel 169 68 78 2016 https://doi.org/10.1016/j.fuel.2015.10.044
  31. Anderson , J.D. Jr. Computational Fluid Dynamics Third Berlin/Heidelberg Springer Berlin Heidelberg 2009 https://doi.org/10.1007/978-3-540-85056-4
  32. Veynante , D. and Vervisch , L. Turbulent Combustion Modeling Prog Energy Combust Sci 28 193 266 2002 https://doi.org/10.1016/S0360-1285(01)00017-X
  33. Ferziger , J.H. and Peric , M. Computational Methods for Fluid Dynamics Comput Math Appl 46 503 504 2003 https://doi.org/10.1016/S0898-1221(03)90046-0
  34. Brodkey , R.S. and Hershey , H.C. Transport Phenomena: A Unified Approach Columbus Brodkey Pub. 2003
  35. Ricardo Software WAVE Knowledge Center 2016
  36. Irimescu , A. , Merola , S.S. , Tornatore , C. , and Valentino , G. Development of a Semi-Empirical Convective Heat Transfer Correlation Based on Thermodynamic and Optical Measurements in a Spark Ignition Engine Appl Energy 157 777 788 2015 https://doi.org/10.1016/j.apenergy.2015.02.050
  37. Heywood , J.B. Internal Combustion Engine Fundamentals New York McGraw-Hill 1988
  38. Caton , J.A. An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines Chichester, UK John Wiley & Sons, Ltd 2015 https://doi.org/10.1002/9781119037576
  39. Douaud , A.M. and Eyzat , P. Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines SAE Technical Paper 780080 1978 https://doi.org/10.4271/780080
  40. Anderson , J.E. , Kramer , U. , Mueller , S.A. , and Wallington , T.J. Octane Numbers of Ethanol− and Methanol−Gasoline Blends Estimated from Molar Concentrations Energy & Fuels 24 6576 6585 2010 https://doi.org/10.1021/ef101125c
  41. Chen , S.K. and Flynn , P.F. Development of a Single Cylinder Compression Ignition Research Engine SAE Technical Paper 650733 1965 https://doi.org/10.4271/650733
  42. Fenimore , C.P. Formation of Nitric Oxide in Premixed Hydrocarbon Flames Symp Combust 13 373 380 1971 https://doi.org/10.1016/S0082-0784(71)80040-1
  43. Sher , E. Handbook of Air Pollution from Internal Combustion Engines: Pollutant Formation and Control São Diego Academic Press 1998
  44. Pitzer , K.S. , Lippmann , D.Z. , Curl , R.F. , Huggins , C.M. et al. The Volumetric and Thermodynamic Properties of Fluids: II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization J Am Chem Soc 77 303 310 1993 https://doi.org/10.1142/9789812795960_0044
  45. Lee , B.I. and Kesler , M.G. A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States AIChE J 21 510 527 1975 https://doi.org/10.1002/aic.690210313
  46. Brown , C.N. and Ladommatos , N. A Numerical Study of Fuel Evaporation and Transportation in the Intake Manifold of a Port-Injected Spark-Ignition Engine Proc Inst Mech Eng Part D J Automob Eng 205 161 175 1991 https://doi.org/10.1243/PIME_PROC_1991_205_167_02
  47. Anderson , J.D. Jr. Fundamentals of Aerodynamics Fifth Nova York McGraw-Hill 2010

Cited By