Results
This SAE Aerospace Recommended Practice (ARP) describes three general types of Ground Support Equipment (GSE) battery chargers. The battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger.” A charger, hereafter called “Opportunity Charger,” which has the ability to charge at a slightly faster rate than a conventional charger. A charger, hereafter called “Fast Charger,” which has the ability to charge at a much faster rate than a conventional charger. Recommendations that apply to all types will refer generically to “charger.”
This SAE Aerospace Recommended Practice (ARP) provides criteria for design and location of power supplies, controls, light fixtures, and associated equipment which are used to provide emergency illumination in transport aircraft, designed to comply with 14 CFR part 25 (Reference 1) for operation under 14 CFR part 91 (Reference 11) and 14 CFR part 121 (Reference 2), and also in compliance with FAA Advisory Circulars AC25.812-1A (Reference 3) and AC25.812-2 (Reference 10). It is not the purpose of an ARP to specify design methods to be followed in the accomplishment of the stated objectives.
This standard specifies services whose architecture can be described in the context of the physical layer architecture (1) and the data link layer architecture (2) of the ISO Open Systems Interconnection Basic Reference Model - ISO 7498.
This specification covers four series of electrical connectors (plugs and receptacles) with removable crimp contacts and accessories (see 6.1). AS81511 connectors are not recommended for new design. All AS81511 detail sheets that specified class D and/or H have been cancelled without replacement, therefore all class D and H requirements have been deleted from this specification. Electrical, mechanical and environmental features of these connectors include: a Environment resisting at sea level and high altitude. b Quick disconnect. c RFI/EMI (Radio Frequency Interference/Electromagnetic Interference) protection (includes shell to shell grounding spring members). d High density insert arrangements. e Low level circuit capabilities. f Scoop-proof. g Fluid resistant class provided. h High temperature class provided. i Several voltage service ratings available. j Individual contact release from the rear of the connector (series 3 and 4 only).
This SAE Information Report reviews the various physical and chemical properties of engine oils and provides references to test methods and standards used to measure these properties. It also includes general references on the subject of engine oils, base stocks, and additives.
This SAE Recommended Practice provides for common battery designs through the description of dimensions, termination, retention, venting system, and other features required in an electric vehicle application. The document does not provide for performance standards. Performance will be addressed by SAE J1798. This document does provide for guidelines in proper packaging of battery modules to meet performance criteria detailed in J1766.
SAE J2600 applies to the design and testing of Compressed Hydrogen Surface Vehicle (CHSV) fueling connectors, nozzles, and receptacles. Connectors, nozzles, and receptacles must meet all SAE J2600 requirements and pass all SAE J2600 testing to be considered as SAE J2600 compliant. This document applies to devices which have Pressure Classes of H11, H25, H35, H50 or H70.
This SAE Information Report describes the processing and fabrication of carbon and alloy steels. The basic steelmaking process including iron ore reduction, the uses of fluxes, and the various melting furnaces are briefly described. The various types of steels: killed, rimmed, semikilled, and capped are described in terms of their melting and microstructural differences and their end product use. This document also provides a list of the commonly specified elements used to alloy elemental iron into steel. Each element’s structural benefits and effects are also included. A list of the AISI Steel Products Manuals is included and describes the various finished shapes in which steel is produced.
This specification covers a petroleum-base solvent in the form of a liquid.
This specification covers a petroleum-base liquid solvent.
This specification establishes hardness and electrical conductivity acceptance criteria of finished or semi-finished parts of wrought aluminum alloys.
This SAE Standard covers the Mini-Shed testing methodology to measure the rate of refrigerant loss from an automotive air conditioning (A/C) system. This SAE procedure encompasses both front and rear air conditioning systems utilizing refrigerants operating under sub-critical conditions.
This SAE Aerospace Standard (AS) will specify what type night vision goggles are required, minimum requirements for compatible crew station lighting, aircraft exterior lighting such as anticollision lights and position/navigation lights that are "NVG compatible." Also, this document is intended to set standards for NVG utilization for aircraft so that special use aircraft such as the Coast Guard, Border Patrol, Air Rescue, Police Department, Medivacs, etc., will be better equipped to chase drug smugglers and catch illegal immigrants, rescue people in distress, reduce high-speed chases through city streets by police, etc. Test programs and pilot operator programs are required. For those people designing or modifying civil aircraft to be NVG compatible, the documents listed in 2.1.3 are essential.
The mass of air required to burn a unit mass of fuel with no excess of oxygen or fuel left over is known as the stoichiometric air-fuel ratio. This ratio varies appreciably over the wide range of fuels - gasolines, diesel fuels, and alternative fuels - that might be considered for use in automotive engines. Although performance of engines operating on different fuels may be compared at the same air-fuel ratio or same fuel-air ratio, it is more appropriate to compare operation at the same equivalence ratio, for which a knowledge of stoichiometric air-fuel ratio is a prerequisite. This SAE Recommended Practice summarizes the computation of stoichiometric air-fuel ratios from a knowledge of a composition of air and the elemental composition of the fuel without a need for any information on the molecular weight of the fuel.
This SAE Aerospace Information Report (AIR) provides a general overview of oxygen systems for general aviation use. Included are a brief review of the factors and effects of hypoxia, system descriptions, and mission explanations for system or component selection, and techniques for safe handling of oxygen distribution systems.
This document provides guidance in the developing, managing, controlling and transmitting of data in the current electronic environment.
The scope of this document is to provide a list of documents of types pertaining to the effects of oxygen on ignition and combustion of materials. Consolidating these references in one place makes it easier to find documents of this type as these references are difficult to locate.
This document covers the performance requirements for solid dry film lubricants, air dried or heat cured, for use in aerospace applications. These lubricants are intended to prevent galling, and may be capable of remaining effective for extended periods of time after exposure to extreme environmental conditions.
This SAE Aerospace Information Report (AIR) considers the issue of proper design guidance for high voltage electrical systems used in aerospace applications. This document is focused on electrical discharge mechanisms including partial discharge and does not address personnel safety. Key areas of concern when using high voltage in aerospace applications are power conversion devices, electrical machines, connectors and cabling/wiring. The interaction between components and subsystems will be discussed. The AIR is intended for application to high voltage systems used in aerospace vehicles operating to a maximum altitude of 30000 m (approximately 100000 feet), and maximum operating voltages of below 1500 VRMS (AC)/1500 V peak (DC). These upper voltage limits have been incorporated because this report focuses on extending the operating voltage of non-propulsive electrical systems beyond that of existing aerospace systems. It is noted that electrical systems for electrical propulsion may
SAE J1979/ISO 15031-5 set includes the communication between the vehicle’s OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD. To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers. When mapped on this model, the services specified are broken into: — Diagnostic services (layer 7), specified in: — ISO 15031-5/SAE J1979 (emissions-related OBD), — ISO 27145-3 (WWH-OBD), — Presentation layer (layer 6), specified in: — ISO 15031-2, SAE J1930-DA, — ISO 15031-5, SAE J1979-DA, — ISO 15031-6, SAE J2012-DA, — ISO 27145-2, SAE J2012-DA, — Session layer services (layer 5), specified in: — ISO 14229-2 supports ISO 15765-4 DoCAN and ISO 14230-4 DoK-Line protocols, — ISO 14229-2 is not applicable to the SAE J1850 and ISO 9141-2 protocols, — Transport layer services (layer 4), specified in
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
Solid chemical oxygen supplies of interest to aircraft operations are "chlorate candles" and potassium superoxide (KO2). Chlorate candles are used in passenger oxygen supply units and other emergency oxygen systems, such as submarines and escape devices. Potassium superoxide is not used in aircraft operations but is used in closed-cycle breathing apparatus. Characteristics and applications of both are discussed, with emphasis on chlorate candles.
This document establishes the requirements for a dry film lubricant AS6449 lubricant for use on breathing oxygen system and potable water system components, for a temperature range of −90 to +300 °F. This document also establishes the Non-Destructive Test (NDT) procedures and criteria for coated production parts. This document requires qualified products and product applicators.
This specification covers one type of glass cloth impregnated with a heat-reactive, thermosetting, solution-addition-type PMR-15 polyimide resin system, supplied in the form of continuous rolls of full width cloth or slit tape.
This specification and its supplementary detail specifications cover silicon dioxide in the form of a white, amorphous powder.
This SAE Recommended Practice describes a method for measuring Roughness Average (Ra) and Peak Count (PC) and other variables of the surface of metallic coated and uncoated steel sheet/strip.
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
This SAE Aerospace Standard (AS) covers variable speed, reversible battery powered drills with removable, rechargeable battery pack and either 3/8 inch or ½ inch chuck used for general maintenance and construction where a battery powered tool is required. This document also satisfies EMI requirements for driver drills, where EMI suppression is required by the purchaser. This document may involve hazardous materials, operations, or equipment and does not purport to address all of the safety considerations associated. It is the responsibility of the user of a piece of equipment to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to its use. Users are cautioned to read all manufacturer’s instructions prior to use.
This SAE Aerospace Recommended Practice (ARP) is applicable to any type of aerospace ground support vehicle, powered or unpowered.
Items per page:
50
1 – 50 of 212577