Your Selections

Wind power
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 
new

A Novel Heating-Coating Hybrid Strategy for Wind Turbine Icing Mitigation

Iowa State University-Linyue Gao, Liqun Ma, Yang Liu, Hui Hu
Published 2019-06-10 by SAE International in United States
The electro-thermal method is most commonly used for wind turbine anti-/de-icing. The upmost drawback of such systems is the high power consumption. In the present study, we proposed to use a durable slippery liquid-infused porous surface (SLIPS) to effectively reduce the power requirement of the heating element during the anti-/de-icing process. The explorative study was conducted in the Icing Research Tunnel at Iowa State University (ISU-IRT) with a DU91-W2-250 wind turbine blade model exposed under severe icing conditions. During the experiments, while a high-speed imaging system was used to record the dynamic ice accretion process, an infrared (IR) thermal imaging system was also utilized to achieve the simultaneous surface temperature measurements over the test model. In comparison to the traditional electrical heating strategies to brutally heat massive area of entire turbine blades, a novel heating-coating hybrid strategy, i.e., combining a leading-edge (LE) heating element to cover the first 30% of the chord length (C) along with using SLIPS to coat entire blade surface, was found to be able to keep the entire blade surface completely…
Datasets icon
Annotation icon
 
new

A Parametric Study on the Thermodynamic Characteristics of DBD Plasma Actuation and Its Potential for Wind Turbine Icing Mitigation

Iowa State University-Cem Kolbakir, Linyue Gao, Yang Liu, Hui Hu
Published 2019-06-10 by SAE International in United States
Wind turbine icing represents the most significant threat to the integrity of wind turbines in cold weather. Ice formation on wind turbine blades was found to cause significant aerodynamic performance degradation, resulting in a substantial drop in energy production. Recently developed Dielectric barrier discharge (DBD) plasma-based anti-/de-icing systems showed very promising effects for aircraft icing mitigation. In this present study, DBD plasma-based anti-/de-icing systems were employed for wind turbine icing mitigation. First, a comprehensive parametric study is conducted to investigate the effects of various DBD plasma actuation parameters on its thermodynamic characteristics. An infrared (IR) thermal imaging system is used to quantitatively measure the temperature distributions over the test plate under various test conditions. DBD plasma actuators are embedded over the surface of a DU91-W2-250 wind turbine blade model, and a series of experiments were conducted by using the Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT) to evaluate the anti-/de-icing performance of the system for wind turbine icing mitigation. Dynamic anti-icing process was recorded by a high-speed imaging system, and an IR…
Annotation icon
 
new

A Smart Icing Detection System for Any Location on the Outer Aircraft Surface

Airborne Technologies-Thomas Unger
Eologix Sensor Technology GmbH-Thomas Schlegl, Michael Moser
Published 2019-06-10 by SAE International in United States
Given approximately one million small and light aircraft in operation worldwide, icing detection and icing quantification of in-flight icing are still an open research topic. Despite technical means are available to de-ice on ground, there is a lack of a suitable control system based on sensor data to de-ice while the aircraft is airborne. Most often, it is still task of the pilot to visually inspect the icing status of the airfoil and/or other critical parts of the aircraft such as engine air intakes, which distracts the flight crew from flying the aircraft especially in IMC conditions. Based on preliminary simulation and tests in 2014 in a collaborative research project lasting from 2015 until 2018, the technology of energy self-sustaining, wireless, self-adhesive smart sensors for industrial sensing in an aerodynamically critical environment (i.e. wind turbines) was further investigated to fulfil general aviation requirements. Prototype hardware setups have been designed and built for application on aircraft. In test flights carried out in Scotland in late 2017, the functionality of the system could be demonstrated. It could…
Datasets icon
Annotation icon
 
new

An Experimental Investigation of a Wind-Driven Water Droplet over the Slippery Liquid Infused Porous Surface

Iowa State University-Liqun Ma, Hui Hu
Published 2019-06-10 by SAE International in United States
The promising anti-icing performance of the slippery liquid infused porous surface (SLIPS) has been recently demonstrated for various engineering applications. The runback icing for aircraft and wind turbines could be effectively mitigated considering the timely removal of water droplet by the wind shearing force due to the low adhesion on the SLIPS. In this study, the flow field both inside and around the wind-driven droplet over the SLIPS was experimentally investigated by using Particle Image Velocimetry (PIV) technique. Previous studies majorly focus on the internal flow pattern before the droplet incipient motion. In this study, the flow field inside a moving droplet was firstly investigated. As a result of the low surface adhesion of the SLIPS, droplet oscillations were eliminated and the droplet internal flow field could be corrected from the optical distortion. Besides the discussion on the wind speed, the droplet viscosity was also studied by varying the water concentration of the glycerin-water solution. It was found that the internal circulation was highly related with the droplet viscosity. The inner circulations within the water…
Annotation icon
 
new

Quantification of 3D Ice Structures Accreted on a Wind Turbine Airfoil Model

Iowa State University-Linyue Gao, Ramsankar Veerakumar, Yang Liu, Hui Hu
Published 2019-06-10 by SAE International in United States
Accurate quantification of 3D shapes of the complex ice structures accreted on wind turbine blades is highly desirable to develop ice prediction models for more accurate prediction of the aerodynamic performance degradation and power reduction due to the ice accretion on wind turbine blades. In the present study, an experimental investigation was conducted to quantitatively characterize the 3D shapes of the ice structures accreted over a DU91-W2-250 wind turbine airfoil model in the Icing Research Tunnel available at Iowa State University (ISU-IRT). A glaze icing condition and a rime icing condition that wind turbines usually experience in winter were duplicated by using ISU-IRT. A high-resolution non-intrusive 3D scanning system was used to make detailed 3D-shape measurements to quantify the complicated ice structures accreted on the wind turbine airfoil model as a function of the ice accretion time. The measurements results show that the complex 3D shapes of the ice structures accreted over the surfaces of the airfoil model under both glaze icing and rime icing conditions were well captured. It is found that the glaze…
Datasets icon
Annotation icon
 
new

Rotary Electrical Contact

  • Magazine Article
  • TBMG-34620
Published 2019-06-01 by Tech Briefs Media Group in United States

Researchers have developed a fundamentally new type of rotary electrical contact that addresses the two limitations of conventional brush/slip ring technology: 1) short operating lifetime due to sliding-contact wear, and 2) electrical arcing associated with contact bounce.

 

Fatigue Behavior of Large Cast Components under Variable Amplitude Loading with Overloads

Fraunhofer Institute LBF-Christoph Bleicher, Rainer Wagener, Heinz Kaufmann
Published 2019-04-02 by SAE International in United States
To reduce the weight and to increase the power as well as to enable the utilization of nodular cast iron components, e.g. for wind turbines and heavy industry parts, locally higher stresses need to be withstood by the material. This becomes crucial, when additional overloads influence the structure of thick-walled components causing high local elastic-plastic deformations. In this case, the cyclic, elastic-plastic material behavior and its development under cyclic loading are important points to be considered during component design. To assess the material’s local elastic-plastic material behavior, strain-controlled fatigue tests were performed under alternating loading, Rε = -1, with unnotched specimens removed from cast blocks as well as from a hub and a planet carrier of wind turbines, made of EN-GJS-400-18U-LT, EN-GJS-700-2, ADI-800 and ADI-900. To determine the influence of constant and variable amplitude loading on the elastic-plastic material behavior, fatigue tests were performed based on constant amplitude as well as on variable amplitude loading. For the fatigue tests under variable amplitude loading, two real load-time histories, which were derived from a measured load-time series…
Datasets icon
Annotation icon
 

Material Removes Ice Buildup Without Power or Chemicals

  • Magazine Article
  • TBMG-33680
Published 2019-02-01 by Tech Briefs Media Group in United States

From airplane wings, to overhead power lines, to the giant blades of wind turbines, a buildup of ice can cause problems ranging from impaired performance all the way to catastrophic failure. Preventing that buildup usually requires energy-intensive heating systems or chemical sprays that are environmentally harmful.

 

Plasma Generator Using Spiral Conductors

  • Magazine Article
  • TBMG-33703
Published 2019-02-01 by Tech Briefs Media Group in United States

NASA's Langley Research Center has developed a patented SansEC sensor technology for use in many different areas, including tall structures and wind turbines. The SansEC technology is a proven wireless sensing platform capable of measuring the electrical impedance of physical matter in proximity to the sensor based on a change in its resonance response. The SansEC sensor also exhibits a unique characteristic to disperse the lightning strike current to help mitigate lightning damage. In a turbine blade application, an array of SansEC sensors will cover the surface area of the composite blade, providing both lightning mitigation and damage sensing. NASA Langley is seeking industrial partners/licensees to commercialize this technology. The research team at NASA Langley is available to assist with further development.

 

Numerical and Experimental Second Law Analysis of a Low Thickness High Chamber Wing Profile

Henri Coanda Labs LLC-Shivesh Sharma
Sheffield Hallam University-Michele Trancossi
Published 2018-10-30 by SAE International in United States
This paper presents a coupled numerical and experimental study of an unconventional wing profile such as cp-180-050-gn (Cambered plate C = 18% T = 5% R = 0.78). This wing profile deals with low speeds. It is not currently used on any aircraft model. Otherwise, it presents interesting performances that can be exploited for the design of low-speed STOL or VTOL aircraft by mean of the very high lift that it can generate and can fit with different uses such as VAWT, cyclorotors drones, which are designed explicitly for low-speed operations. After a preliminary CFD assessment of the wing a complete experimental characterisation also at high angles of attack has been performed. The excellent agreement between CFD and experiments has allowed producing a complete analysis of the behaviour of the wing profile both before and after stall conditions. This study has the objective of analysing the viability of such an unconventional wing in traditional or over-stalling conditions. A complete modelling of the specific wing is produced with the definition of its potential deployment into unconventional…
Datasets icon
Annotation icon