Your Selections

Wear
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

FABRICATION AND WEAR CHARACTERISTICS BASALT FIBER REINFORCED POLYPROPYLENE MATRIX COMPOSITES

Dhanalakshmi Srinivasan Institute of Technology-Krishnaraj M, Thirugnana Sambandha T, Arun R
Trichy Engineering College-Vaitheeswaran T
  • Technical Paper
  • 2019-28-2570
To be published on 2019-11-21 by SAE International in United States
Generally brake pads are manufacturing by use of asbestos materials, these materials are chemically harmful and toxic, affects human health. The present investigation fabricates polypropylene composites with mixing constant volume [5 Vol.%] of alumina nano particles and different volume percentages [0%, 5%, 10% & 15%] of basalt fibre by hand layup compression technique. The wear characteristics of polypropylene matrix composites were tested by dry sliding condition using pin on disc apparatus configuration with hardened steel counter-face at elevated temperature. The load was applied 30N to 70N with the interval of 20N and varying of sliding speed 300 rpm to 900rpm with the interval of 300rpm for the time period of 0-180 sec. The wear rate was decreases with addition of alumina nano particle and also increases the frictional force for the effect of basalt fibre content present in the composites. The co-efficient of friction was increases from 0.1 to 0.66 under normal loading condition.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Experimental Study on Tool Wear and Cutting Temperature during Machining of Nimonic C-263 and Waspaloy Based on Taguchi Method and Response Surface Methodology

Sri Sairam Engineering College-Vetri Velmurugan Kannan
Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan
Published 2019-10-11 by SAE International in United States
Nickel based materials of Nimonic C-263 and Waspaloy are used nowadays for aerospace applications owing to its superior strength properties that are maintained at a higher temperature. Tool wear and cutting temperature in the vicinity of cutting edge are two essential machinability characteristics for any cutting tool. In this regard, this study is pursued to examine the influence of factors on measuring of tool wear (Vba) and cutting temperature (Ts) during dry machining of two alloys studied experimentally based on Taguchi method and response surface methodology. Taguchi’s L16 orthogonal array is used to design the experiment and a PVD (TiAlN), CVD (TiN/Al2O3/TiCN) coated carbide inserts are used on turning of two alloys. The factor effect on output responses are studied using analysis of variance, empirical models, and responses surface 3D plots. To minimize the response and to convert into one single optimum level, responses surface desirability function approach is applied. The results show that progress of flank wear associated with Waspaloy is faster that of Nimonic C-263 due to high cutting temperature for Waspaloy that…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Multi Characteristics Optimization of Treated Drill Tool in Drilling Operation Key Process Parameter Using TOPSIS and ANOVA Technique

SRM Institute of Science and Technology-Sundar Singh Sivam Sundarlingam Paramasivam, Aishik Banerjee, Avanti Kulkarni
Published 2019-10-11 by SAE International in United States
To survive in the present global competitive world, the manufacturing sectors have been making use of various tools to achieve the high quality products at a comparatively cheaper price. Appropriate cutting set up must be used to further better the machinability of a work piece material. A longer life of the tools and equipment’s are important factors in any industry. Since the inception of the machine tool industry, cutting tool life and tool wear remain a subject of deep interest to study its failure and improvement. The present study finds out the optimum cutting results in drilling of AM60 magnesium alloy using different cryogenically treated cutting inserts. The Utility concept coupled with Taguchi with Multi response approach (TOPSIS) was employed. According to Analysis of variance (ANOVA) results, the feed was the major dominating factor followed by the cutting speed. This work deals with optimization approaches for the determination of the optimum process parameters by cryogenically treated drill HSS tools which minimizes surface roughness, torque, tool life, entry burr and tool cost, and maximizes material removal…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Investigation of Dry Sliding Wear Behavior of AA8011 Reinforced with Zirconium Oxide and Aluminium Oxide Hybrid Composites Processed through Multi-Direction Forging

Sri Krishna College of Engg. and Tech.-Sathishkumar Kuppuraj, Soundararajan Ranganathan, Sathishkumar Aruchamy, Shanthosh Gopal
Published 2019-10-11 by SAE International in United States
The Cardinal goal of this research work is to fabricate hybrid composites of AA8011 with reinforcement particles of Zr2O3 and Al2O3 which was taken in equal (5wt%) weight percentage. The hybrid composites were cast in a square shape (50x50x50 mm size) under the optimal stir casted process parametric condition, further, it was taken for the forging process. The prepared specimens were induced for uni-direction (x), bi-direction (x and y) and multi-direction (x,y, and z) forging route and the response of microhardness of 53, 68, 81 and 96 VHN were obtained respectively due to microstructural phase changes with an even distribution of particles in the matrix. Thus, the tribological properties of prepared specimens were tested using pin-on-disc Tribometer at room temperature under dry sliding condition of load 5,10,15,20 N and by adjusting the sliding speed as 266 and 531 rpm respectively. The outcomes uncovered all the specimens that the wear rate increments with an increase in load and coefficient of friction show an increase at most extreme load conditions. Wear rate increments with increment in the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Critical Wear Assessment of AA8011/Hybrid Metal Matrix Composites with Surface Amendment Using Friction Stir Process

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Shri Vignesh Ramachandran, Ramprakash Palanivelu, Saravanakumar Ramasamy
Published 2019-10-11 by SAE International in United States
Friction Stir Process (FSP) was employed for surface modification of steel, titanium, aluminum and magnesium-based alloy has been significantly revised through the last decade. Friction Stir Process can improve surface properties such as hardness, abrasion resistance, ductility, strength, fatigue life, corrosion resistance and formability without upsetting the bulk properties of the material. The aluminum alloy having low ductility and softness characteristics are restricted because of their poor tribological properties. Preliminary studies reveal that, an ideal circumstance is to improve the aluminum alloy material life cycles by the way of strengthening the surface layer which can be modified through reinforcing nanoparticles through FSP. The main objective of the study is to improve the surface properties of AA8011 by adding nanoparticles such as SMA and silicon nitrate (Si3N4) through friction stir process. By the way, this experiment was carried out to obtain three set of samples like virgin AA8011, AA8011 with shape memory alloy and AA8011 along with shape memory alloy and silicon nitride during FSP under optimal process parametric condition. The nanoparticles distribution was improved after…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Stress and Model Analysis of Upper and Lower Bolster Components of Molten Steel Transfer Vehicle

Vellore Institute of Technology-Darla Siva Prasad, Chooriyaparambil Damodaran Naiju, Posam Naveen Kumar
Published 2019-10-11 by SAE International in United States
The transportation of hot metal from blast furnaces to melting shops is carried out by molten steel transfer vehicle such as Torpedo ladle car in the steel plants. In need to design Torpedo ladle car within size limitation, capacity requirement and withstanding the impact, static, thermal shock and abrasion conditions, structural analysis is essential for validation. In this paper, stress and model analysis for upper and lower bolsters of Torpedo Ladle Car is carried out. The components are modelled in CAD and analysed using finite element method using software with the required boundary conditions. The results of structural analysis of bolster components are presented and discussed. The results shows that the deflection at the centre of upper and lower bolster was due to bending and applied load. The modal analysis predicted the natural frequencies by using block lanczos method.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Appraisal of Tribo Meter Study on 20MnCr5 Alloy Steel under Case Hardened and Shot Peened Condition

Shanthi Gears Limited-Vignesh Nataraj
Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Janarthanan Prakash, Dinu Mathew
Published 2019-10-11 by SAE International in United States
This research is limited to study the strength and wear resistance of 20MnCr5 (SAE 5120) alloy steel under monolithic, case hardened and case hardened with shot peening processing condition. Improve the hardness of the material by enhancing the core and surface strength of case hardened with the shot peened sample. The main objective of this proposed work is to conduct the tribometer test by varying the load of 10, 20, 30 and 40N and sliding speed of 193, 386 rpm respectively on wear rate and coefficient of friction be calculated and recorded for this study. Less wear rate and nominal coefficient of friction were observed for case hardened with the shot peened sample. Load increases wear rate increases and the coefficient of friction decreases when sliding distance increases wear rate decreases and the coefficient of friction increases for all the tested samples due to oxide layer formation. After reaching certain load and sliding speed the curve goes linear because of more contact between pin and disc, so that mechanical amalgamation layer will be formed. On…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Development of Methodology to Determine Toe Geometry of any Vehicle at Its Early Design Stage for Optimum Tyre Life

Mahindra & Mahindra, Ltd.-Nitin Kumar Khanna, Karthik Senthi, Vignesh Natarajan
Published 2019-10-11 by SAE International in United States
Toe setting is one of the major wheel alignment parameters which directly effects handling of a vehicle. Correct toe setting ensures desired dynamic behavior of an automobile like straight line stability, cornering behavior, handling and tire durability. Incorrect setting of toe during design stage significantly deteriorates tire durability and leads to uneven tire wear. In the present scenario of automotive industry, toe setting is majorly an iterative or a trial and error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Therefore, determining optimum toe setting at an early stage of a product development will not only save significant development time but it will also benefit in reducing product validation time and cost. Through this paper an attempt has been made to develop a methodology for deciding toe setting for any vehicle as a first time right approach to cut down on conventional expensive & time consuming iterative approach. In this new methodology…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Parameter Optimization during Minimum Quantity Lubrication Turning of Inconel 625 Alloy with CUO, Al2O3 and CNT Nanoparticles Dispersed Vegetable-Oil-Based Cutting Fluid

Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan
Published 2019-10-11 by SAE International in United States
Inconel 625, nickel based alloy, is found in gas turbine blades, seals, rings, shafts, and turbine disks. On the other hand, the manufacturing of this alloy is challenging, mainly when machining processes are used due to excellent mechanical properties. Application of nanofluids in minimum quantity lubrication (MQL) shows gaining importance in the machining process, which is economical and eco-friendly. The principal objective of this investigational work is to study the influence of three types of nanofluids in the MQL turning of Inconel 625 nickel based alloys. The used nanofluids are multi-walled carbon nanotubes (CNT), alumina (Al2O3) and copper oxide (CUO) dispersed in vegetable oil. Taguchi-based L27 orthogonal array is used for the experimental design. The parameter optimization of design variables over response is carried out by the use of Taguchi-based derringer's desirability function. The design variables are machining parameters (speed, feed), nanofluids (Al2O3, CNT, CUO), and three different weight percentage (0.1, 0.25, and 0.5 wt. %). The results showed that minimum values of surface roughness could be achieved at 0.10 wt. % of nanoparticles, CNT…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Tensile and Fatigue Behavior of Shallow Cryogenically Treated EN19 Alloy Steel

BSACIST-Loganathan Sekar, Tamil Arasan
SRM Institute of Science and Technology-Rajendran Raj
Published 2019-10-11 by SAE International in United States
Tensile and axial fatigue tests were conducted on shallow cryogenically treated EN19 medium carbon alloy steel to investigate its mechanical behavior. The test samples were conventionally heat treated then oil quenched at room temperature. Followed by the samples were kept for shallow cryogenic treatment to -80°C for 8 hours using liquid nitrogen. Then the samples were tempered in a muffle furnace to relieve the induced residual stresses. Tensile and axial fatigue test were carried out on both treated and non-treated samples to measure its tensile strength and fatigue behavior respectively. Microscopic examination also had done to compare the effect of shallow cryogenic treatment on its microstructure. The results exposed that there is an increase in the tensile strength and reduction in fatigue life of shallow cryogenically treated samples over base metal and improved wear resistance.
This content contains downloadable datasets
Annotation ability available