Your Selections

Water
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

LIFE CYCLE ASSESSMENT OF A PASSENGER VEHICLE TO ANALYSE THE ENVIRONMENTAL IMPACTS USING CRADLE TO GRAVE APPROACH

Mahindra Research Valley-Rahul Lalwani, Saravanan N, Arunmozhi Veeraputhiran, IlavarasIi D
  • Technical Paper
  • 2019-28-2581
To be published on 2019-11-21 by SAE International in United States
OBJECTIVE: Climate change is primary driver in the current discussions on CO2 reduction in the automotive industry. Current Type approval emissions tests (BS III, BS IV) covers only tailpipe emissions, however the emissions produced in upstream and downstream processes (e.g. Raw material sourcing, manufacturing, transportation, vehicle usage, recycle phases) are not considered in the evaluation. The objective of this project is to assess the environmental impact of the product considering all stages of the life cycle, understand the real opportunities to reduce environmental impact across the product life cycle. METHODOLOGY: As a part of environmental sustainability journey in business value chain, Life-cycle assessment (LCA) technique helps to understand the environmental impact categories. To measure overall impact, a cradle to grave approach helps to assess entire life cycle impact throughout various stages. LCA is a technique to assess environmental impacts associated with all the stages of a product's life from raw material extraction through materials processing, manufacture, distribution, use, repair & maintenance, disposal or recycling. A study was conducted on a passenger vehicle for life cycle…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Assessing the Combined Outcome of Rice Husk Nano Additive and Water Injection Method on the Performance, Emission and Combustion Characters of the Low Viscous Pine Oil in a Diesel Engine

Anna University Chennai-Mebin Samuel P, Devaradjane Gobalakichenin
University College of Engineering Villupuram-Gnanamoorthi V
  • Technical Paper
  • 2019-01-2604
Published 2019-10-22 by SAE International in United States
The research work intends to assess the need and improvement by using a low viscous bio oil, RH (rice husk) nano particles and water injection method in enhancing the performance, emission and combustion characters of a diesel engine. One of the major setbacks for using biodiesel is its higher viscosity. Hence, a low viscous oil (pine oil) which does not need transesterification process was used as a biofuel in this study. Further, to improve its characteristics a non-metallic nano additive produced from rice husk was added at 3 proportions (50, 100, 200 ppm) and the optimal quantity was found as 100 ppm based on the BTE (brake thermal efficiency) value of 30.2% at peak load condition. This efficiency value was accompanied by a considerable decrease in pollutants like HC (hydrocarbon)-34.8%, Smoke-31.6%, CO (carbon monoxide)-43.7%. On the contrary, NOx (oxides of nitrogen) emission was found to be increased for all load values. At peak load, when compared with diesel, pine oil with RH has 19.3% increased NOx emission. To reduce this increased NOx emission, water was…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Wheel and Wheel Trim Weathering Testing for Paint Coatings

Wheel Standards Committee
  • Ground Vehicle Standard
  • J2633_201910
  • Current
Published 2019-10-21 by SAE International in United States
This SAE lab test procedure should be used when performing the following specialized weathering tests for wheels; Florida Exposure, QUV, Xenon and Carbon Weatherometer. In addition to these procedures, some additional post-weathering tests may be specified. Please refer to customer specifications for these requirements.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Assessment of Numerical Cold Flow Testing of Gas Turbine Combustor through an Integrated Approach Using Rapid Prototyping and Water Tunnel

Indian Institute of Technology Madras-Ssheshan Pugazhendhi
SRM Institute of Science and Technology-Sundararaj Senthilkumar
Published 2019-10-11 by SAE International in United States
In the present work, it is aimed at developing an integrated approach for combustor modeling involving rapid prototyping and water tunnel testing to assess the cold flow numerical simulations; the physical model will be subjected to cold flow visualization and parametric studies and CFD analysis to demonstrate its capability for undergoing rigorous cold flow testing. A straight through annular combustors is chosen for the present study because of it has low pressure drop, less weight and used widely in modern day aviation engines.Numerical Analysis has been performed using ANSYS-FLUENT. Three dimensional RANS equations are solved using k-ɛ model for the Reynolds numbers ranging from 0.64 x 105-1.5 x 105 based on the annulus diameter. Post processing the results is done in terms of jet penetration, formation of recirculation zone, effective mixing, flow split and pressure drop for different cases. Physical combustor models are fabricated using Rapid prototyping with Poly Lactic Acid material and approximated 2D combustor model is used for capturing important flow patterns using high speed camera in 2D water tunnel, and for pressure…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Multi Response Optimization on Machining Titanium Alloy Using Taguchi-DEAR Analysis in Abrasive Water Jet Cutting

SRM Institute Of Science And Technology-Muthuramalingam Thangaraj, Akhtar Atif
Tishk International University-Ganesh Babu Loganathan
Published 2019-10-11 by SAE International in United States
Abrasive water jet cutting has been proven to be an effective technology for processing various engineering materials. This paper investigated the effects of process parameters on depth of cut in abrasive water jet cutting of titanium alloy. Four different process parameters were undertaken for this study; water pressure, nozzle traverse speed, abrasive mass flow rate and standoff distance. The influence of these process parameters on depth of cut, surface roughness and MRR has been investigated and analyzed. An empirical model for the prediction of depth of cut in abrasive water jet cutting of cast iron has been developed using regression analysis. The approach is based on Taguchi-DEAR method to optimize the AWJM process parameter for effective machining. It has been found that the stand-off-distance has highest impact on performance measures among all process parameters.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Amelioration of Modular Mobility by Adopting Split Cell Solar Panel Cleaning and Cooling Thereof

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Ajith Raja, Arunpragash Mohana Sundaram, Ashwanth Pranav Selvamani
Published 2019-10-11 by SAE International in United States
In the photovoltaic system, the efficiency of solar cells is determined by the combination of latitude and climate. The electricity generation in the photovoltaic cell is more in the morning time than in the afternoon time. This is due to the fact that an increase in solar cell temperature leads to a decrease in efficiency of the solar panel. This work aims to provide necessary cooling to the solar panel for favorable output during noon time. Normally electrical modular vehicles use non-split cell solar panels. In order to increase the efficiency, we are using a split cell solar panel as it increases the voltage by halving the size of the silicon chips. Thus, having the cells results in increasing efficiency and lowering the operation temperature. The solar panel should be maintained at a particular temperature by adopting sprinkling of water method in solar panel for hybrid vehicles. The proposed system consists of a storage tank, radiator, temperature sensor, water sprinkle jets attached to the hybrid vehicle. When the temperature increases beyond the limit, the temperature…
This content contains downloadable datasets
Annotation ability available
new

Rose-Inspired Device Collects and Purifies Water

  • Magazine Article
  • TBMG-35276
Published 2019-10-01 by Tech Briefs Media Group in United States

A new device, inspired by a rose, inexpensively collects and purifies water. The device is a new approach to solar steaming for water production — a technique that uses energy from sunlight to separate salt and other impurities from water through evaporation.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of a Coupling System of Aircraft Environmental Control and Fuel Tank Inerting Based on Membrane Separation

Beihang University-Weixing Yuan, Jiaqi Hou
CAPDI-Yan Zheng
Published 2019-09-16 by SAE International in United States
This paper raises a coupling system of aircraft environmental control and fuel tank inerting based on membrane separation. The system applies a membrane dehumidifier to replace water vapor removal unit of heat regenerator, condenser and water separator, which is widely used in conventional aircraft environmental control system (ECS) nowadays. Water vapor can travel across the membrane wall under its pressure difference without phase change, so the dehumidification process consumes no cooling capacity as traditional ECS and the cooling capacity of the new system increases. This paper first compares the thermodynamic properties of ECS based on membrane dehumidification and the traditional ECS based on condensation. The results show that the membrane dehumidification system has larger cooling capacity and lighter weight. For a given cooling capacity requirement, the membrane dehumidification system can use less bleed air since the enthalpy of the outlet air is lower. Besides, the fuel tank inerting system also uses an air separation module to produce nitrogen enriched air based on membrane separation. After the air is dehumidified in membrane dehumidification ECS, its parameters…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Experimental Analysis of the Influence of Water Injection Strategies on DISI Engine Particle Emissions

IVK - University of Stuttgart-Antonino Vacca, Michael Bargende
Technische Universitat Berlin-Maike Sophie Gern
Published 2019-09-09 by SAE International in United States
Increasing the efficiency of modern gasoline engines (with direct injection and spark-ignition - DISI) requires innovative approaches. The reduction of the engine displacement, accompanied by an increase of the mean pressure, is limited by the tendency of increasing combustion anomalies. Conventional methods for knock mitigation, on the contrary, have a negative effect on consumption and efficiency. A promising technology to solve these conflicting objectives is the injection of water. Both the indirect and the direct water injection achieve a significant reduction in the load temperature. The fuel enrichment can be reduced, whereby the operating range of the exhaust aftertreatment can be extended. In addition, water injection paves the way for an increase in the geometric compression ratio, which leads to an efficiency advantage even at partial load. The influence of water injection on the combustion process and raw emissions was analyzed experimentally on a single-cylinder research engine with direct and indirect water injection. Even though water injection initially slows down the combustion process, both injection concepts allow a clear shift in the knock limit and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Reduction of NOx in a Single Cylinder Diesel Engine Emissions Using Selective Non-Catalytic Reduction (SNCR) with In-Cylinder Injection of Aqueous Urea

Univ of North Florida-Anthony Timpanaro, John Nuszkowski
Published 2019-09-09 by SAE International in United States
The subject of this study is the effect of in-cylinder selective non-catalytic reduction (SNCR) of NOx emissions in diesel exhaust gas by means of direct injection of aqueous urea ((NH2)2CO) into the combustion chamber. A single cylinder diesel test engine was modified to accept an electronically controlled secondary common rail injection system to deliver the aqueous urea directly into the cylinder during engine operation. Direct in-cylinder injection was chosen to ensure precise delivery of the aqueous urea without the risk of any premature reactions taking place. The injection strategy was four molar ratios, 4.0, 2.0, 1.0 and 0.5 with five varying injection timings of 60, 20, 10, 0, and -30 degrees after top dead center (ATDC). The main secondary injection fluid, aqueous urea, was mixed with glycerol (C3H8O3) in an 80-20 ratio, by mass, with the desire to function as a lubricant for the secondary injector. In addition to the base line and aqueous urea tests, neat water injection and an 80-20 ratio, by mass, water-glycerol solution tests were also conducted to compare the effects…
This content contains downloadable datasets
Annotation ability available