Your Selections

Waste heat utilization
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Electric Vehicle Thermal Management System For Hot Climate Regions

Pranav Vikas India Private Limited-Tarun Rana, Yuji Yamamoto
  • Technical Paper
  • 2019-28-2507
To be published on 2019-11-21 by SAE International in United States
ELECTRIC VEHICLE THERMAL MANAGEMENT SYSTEM FOR HOT CLIMATE REGIONS Rana Tarun*, Yamamoto Yuji, Kumar Ritesh, Bhagatkar Shubhada Pranav Vikas India Private Limited, India Key Words Electric Vehicles (EV); Battery Thermal Management System (BTMS); COP; Electric Vehicle Thermal Management System (EVTMS); BTMS and HVAC System Integration; Thermal System Performance Comparison; Active Liquid Cooling; EV Battery Cooling Research and/or Engineering Questions/Objective Electric Vehicles is the need of time to limit global warming and it is in application at a wide scale in colder or mild climate regions where ambient temperature is limited to mild or moderate level. Its application (Heat pump, CO2) is constrained to cold climates only due to securing better COP for heating function, sacrificing cooling COP of the existing system when operated in Hot Climate Regions, thus limiting its application to nearly half of the automotive user-base. This study is aimed to develop a new Electric Vehicle Thermal Management System (EVTMS) limited to active liquid cooling for application of Electric Vehicle in Hot Climate Regions with higher system COP targets when compared to existing…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Prototype Design of a Small Scale Thermionic Energy Generator for Waste Heat Recovery in Hybrid Electric Vehicle

BSDU-Kantaprasad Kodihal, Ankur Sagar
Published 2019-10-11 by SAE International in United States
Sustainable energy solution for hybrid electric vehicles is an important area of research. Mobility and its ease is therefore being an essential component of development. Automotive technology is an area where methods are explored in recent times to provide sustainable solution for reduction of fuel consumption and carbon emissions by switching to hybrid technology and electric vehicles where regeneration of energy plays an important role. At present the research is focused on achieving methods of solid state conversion of heat into electricity but it is limited to thermoelectric methods which has lower conversion efficiency. A comparative analysis of the direct energy convertors shows that thermionic energy conversion stands better with a higher conversion efficiency. Very close and non-contact type of electrode spacing having electrical insulation provided with vacuum or inert gas environment is the basic requirement while designing any thermionic energy generator. Identifying these key research challenges, this article discusses the design of a prototype small scale thermionic generator. The paper hence explores a platform for conducting experimental research on solid state thermionic conversion, space…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Study and Mathematical Analysis of Thermionic Energy Conversion Materials Based on Their Solid State Emission Properties

BSDU-Kantaprasad Kodihal, Ankur Sagar
Published 2019-10-11 by SAE International in United States
The physical mechanism of direct energy conversion technology for space applications is well known for over a century. Whereas thermionic energy conversion is now being explored for automotive regeneration applications considering its high conversion efficiency. The thermionic emission used in space applications has operating temperatures >20000C which is much higher than available temperature at terrestrial automotive applications. Hence the key research interests are focused towards effective utilization of thermionic energy conversion for automotive waste heat recovery at considerably lower temperatures i.e. <10000C. This strongly needs a selection of suitable materials in thermionic convertor. This work shows a comprehensive study on materials and their work function for thermionic emission at relatively lower temperature. The selection of different emitter materials is based on simulation applying Richardson Dushman equation and child’s law at operating temperature ranges. The paper concludes with a comparative analysis of high and low work function materials showing their behavior of thermionic emission at specified temperature.
This content contains downloadable datasets
Annotation ability available
new

Chip Converts Wasted Heat to Usable Energy

  • Magazine Article
  • TBMG-35259
Published 2019-10-01 by Tech Briefs Media Group in United States

Car engines, laptop computers, cellphones, and refrigerators all heat up with overuse. That heat can be captured and turned into energy using a method that produces electricity from heat. The technology uses a silicon chip, also known as a “device,” that converts more thermal radiation into electricity. This could lead to devices such as laptop computers and cellphones with much longer battery life and solar panels that are much more efficient at converting radiant heat to energy.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

The Ultra Low Emissions Potential of the Recuperated Split Cycle Combustion System

Dolphin N2 Ltd-Nicholas Owen
Ricardo UK Ltd-Rhys Pickett, Andrew Atkins
Published 2019-09-09 by SAE International in United States
The recuperated split cycle engine is a fundamentally new class of internal combustion engine that offers a step change in thermal efficiency over conventional Otto and Diesel cycle engines. In a split cycle engine, the compression and combustion strokes are performed in different cylinders. Intensive cooling of the compression stroke by the injection of liquid nitrogen directly into the chamber enables the recovery of waste heat from the exhaust between the compression and combustion cylinders. Brake efficiencies of over 50% have been reported without compression cooling, rising to 60% where the compression stroke is cooled by the injection of liquid nitrogen. The technology targets the heavy duty, long-haul sector where electrification is ineffective.In this paper, results from an experimental program conducted on a single cylinder research engine, representing the combustor cylinder of a recuperated split cycle engine are reported. The effect of fuel injection timing, valve timing and injection pressure were studied at 1200rpm at a range of loads. Experiments using oxygen depleted air to represent the effect of the injection of liquid nitrogen in…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Thermal Efficiency Comparison of Different Injector Constellations in a CI Engine

King Abdullah Univ. of Science & Tech.-Gustav Nyrenstedt, Hao Shi, Bengt Johansson
New Ace Inst Co Ltd-Kazumasa Watanabe, Kenji Enya, Noboru Uchida
Published 2019-09-09 by SAE International in United States
More stringent emission regulations call for high-efficiency engines in the heavy-duty vehicle sector. Towards this goal, reduced heat losses, as well as increased work output, are needed. In this study, a multiple injector concept to control the combustion as well as reduce the hot boundary zones is proposed. Earlier studies have proven that multiple injectors experience lower heat losses and higher efficiency. However, a comprehensive investigation of the causes for experimental heat loss was not performed in depth. Experiments in a heavy-duty CI engine equipped with three injectors were thus performed. Engine configurations of single, dual and triple injectors were compared for a single-injection case as well as a multi-injection (Sabathe-cycle) case. Heat losses, efficiency and the emission levels were quantified and investigated. Optical experiments were performed to investigate the temperature field as well as flame behavior. This led to further understanding of the heat loss drivers. Experimental data was coupled with the double compression expansion engine concept for waste heat recovery, utilizing the energy from reduced heat losses. Notable findings included an efficiency increase…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Mild Hybrid SIDI Turbo Passenger Car Engine with Organic Rankine Cycle Waste Heat Recovery

Volvo Car Corporation-Fredrik B. Ekström, Ola Rolandson, Soren Eriksson, Christer Odenmarck, Mattias Svensson, Andreas Eriksson, Hans Olsen
Published 2019-09-09 by SAE International in United States
While striving for more fuel-efficient vehicles, all possible measures are considered to increase the efficiency of the combustion engine powertrain. 48V mild hybrid technology is one such measure, SIDI (Spark Ignited Direct Injection) engines with Miller technology are another, while recovering energy from the engine’s waste heat (WHR) is yet another option.In this paper, results will be published from an advanced engineering project at Volvo Cars including all of these components. An ethanol based Organic Rankine Cycle (ORC) WHR-system was successfully built around a 4-cylinder, 2.0 litre SIDI-engine, including 48V mild hybrid technology, with vehicle packaging considered. A dedicated control system was also developed for the ORC system including communication between it and the engine. The ORC system uses the engine exhaust as the heat source, for which a purpose-built evaporator was designed and built to fit in the vehicle tunnel. The expansion of the ethanol vapour occurs in an axial piston expander coupled both electrically to the hybrid system and mechanically to the engine crankshaft via a belt-drive. This dual power output from the…
This content contains downloadable datasets
Annotation ability available

Thin-Film System Converts Heat from Electronics into Energy

  • Magazine Article
  • TBMG-34758
Published 2019-07-01 by Tech Briefs Media Group in United States

Nearly 70 percent of the energy produced in the United States each year is wasted as heat. Much of that heat is less than 100 °C and emanates from things like computers, cars, or large industrial processes. A thin-film system was developed that can be applied to sources of waste heat like these to produce energy at levels unprecedented for this kind of technology.

Generating Electrical Power from Waste Heat

  • Magazine Article
  • TBMG-34611
Published 2019-06-01 by Tech Briefs Media Group in United States

Directly converting electrical power to heat is easy; however, converting heat into electrical power is not as easy. To address this issue, a tiny silicon-based device was developed that can harness what was previously called waste heat and turn it into DC power. The device could be used as a compact infrared power supply that could replace radioisotope thermoelectric generators (RTGs) that are used for such tasks as powering sensors for space missions that don’t get enough direct sunlight to power solar panels. The device is made of common and abundant materials such as aluminum, silicon, and silicon dioxide — or glass — combined in uncommon ways.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Thermodynamic Design, Analysis and Test of Cummins’ Supertruck 2 50% Brake Thermal Efficiency Engine System

Cummins Inc.-Daniel Mohr, Timothy Shipp, Xueting Lu
Published 2019-04-02 by SAE International in United States
Current production heavy duty diesel engines have a brake thermal efficiency (BTE) between 43-46% [1]. In partnership with the United States Department of Energy (DOE) as part of the Supertruck 2 program, Cummins has undertaken a research program to develop a new heavy-duty diesel engine designed to deliver greater than 50% BTE without the use of waste heat recovery. A system level optimization focused on: increased compression ratio, higher injection rate, carefully matched highly efficient turbocharging, variable lube oil pump, variable cooling components, and low restriction after treatment designed to deliver 50% BTE at a target development point. This work will also illustrate the system level planning and understanding of interactions required to allow that same 50% BTE heavy duty diesel engine to be integrated with a waste heat recovery (WHR) system to deliver system level efficiency of 55% BTE at a single point. In addition to a test bench demonstration, the described system is also planned to be demonstrated at a vehicle system level. This paper summarizes the process and results of the 50%…
Annotation ability available