Your Selections

Volatile organic compounds
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Employing natural plant based fiber in interior automotive parts for cost & weight benefit

Vivekanandhan-Vivekanandhan Venkatesan Balaguru
  • Technical Paper
  • 2019-28-2559
Published 2019-11-21 by SAE International in United States
The Automotive industry is in ever more need for a lesser weight car due to progressively stringent emission norms and the demand of customer to have better mileage. It can be a gargantuan challenge for automotive manufacturers to search for lesser weight material to meet both customers as well as regulatory norms. But in some cases such lower weight material can increase the cost and adding a expensive material which increases overall cost to a price sensitive market like India is not favorable. One such solution is using the indigenous plant fiber (Jute) in combination with propylene (PP) to make Interior plastics components. Jute a vegetable fiber also referred to as "the golden fiber" has high tensile strength, low extensibility and is well established in fabric, packing, agriculture, construction industries. The biodegradable Jute lesser weight & abundance (India is the leading manufacturer of the Jute) can be utilized in making automobile trim parts in India. Through this paper we will have insight of the natural fiber based plastic components the benefits (lesser weight, Less GSM…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Paint System, Fluorescent, Removable, for Aircraft Application

AMS G8 Aerospace Organic Coatings Committee
  • Aerospace Material Specification
  • AMSP21600B
  • Current
Published 2019-10-28 by SAE International in United States
This specification establishes the requirements for a high visibility, durable, exterior fluorescent coating system consisting of a pigmented fluorescent coating with a clear protective overcoat containing a weathering stabilizer. This coating system is capable of being removed without softening the permanent undercoats.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Primer, Anodic Electrodeposition for Aircraft Applications

AMS G8 Aerospace Organic Coatings Committee
  • Aerospace Material Specification
  • AMS3144A
  • Current
Published 2019-10-17 by SAE International in United States
This specification establishes the requirements for a waterborne, corrosion inhibiting, chemical and solvent resistant, anodic electrodeposition epoxy primer capable of curing at 200 to 210 °F (93 to 99 °C).
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modeling and Simulation of Refueling Emissions from Plug-in Hybrid Electric Vehicles

SAE International Journal of Fuels and Lubricants

Jiangsu University, China-Shu Liu, Ren He
  • Journal Article
  • 04-12-03-0014
Published 2019-10-14 by SAE International in United States
Vehicular evaporative emissions are an important source of volatile organic compounds (VOCs). Moreover, the engines of plug-in hybrid electric vehicles (PHEVs) may not start for a long time, causing the activated carbon canister to not purge well in-use and to become saturated with fuel vapor. Therefore, the problems of evaporative emissions and refueling emissions of PHEVs are still severe. The objectives of this article are to model and simulate the refueling emissions from PHEVs to shorten the design and development cycle. To achieve the goals, the release of refueling emissions is divided into two stages: the depressurization stage and the refueling stage. The mathematical model has been established by means of the ideal gas law and the gas mass transfer and diffusion law. Then, the numerical model is built and the volume of fluid (VOF) model was applied in the simulation. Moreover, the numerical model was validated by experiment on internal pressure increase of the fuel tank. The baseline case is conducted under the condition that the fuel dispensing rate is 50 L/min. Finally, different…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Air Conditioning Systems for Subsonic Airplanes

AC-9 Aircraft Environmental Systems Committee
  • Aerospace Standard
  • ARP85G
  • Current
Published 2019-09-25 by SAE International in United States
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing, and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls, and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating. c A means for cooling (air or vapor cycle units and heat exchangers). d A means for removing excess moisture from the air supply. e A ventilation subsystem. f A temperature control subsystem. g A pressure control subsystem. Other system components for treating cabin air, such as filtration and humidification, are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning. The interface with the major associated system, the pneumatic system (Chapter 36 of ATA 100) is at the inlet of the air conditioning shutoff valves. This boundary definition aligns with that in the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

On Soot Sampling: Considerations when Sampling for TEM Imaging and Differential Mobility Spectrometer

Brunel University London-Behzad Rohani
Norwegian Univ of Science and Technology-David Robert Emberson, Ragnhild Sæterli PhD, Terese Lovas
Published 2019-09-09 by SAE International in United States
Particulate matter (PM) has been sampled from a compression ignition engine using a differential mobility spectrometer (Cambustion DMS 500) and for imaging in a transmission electron microscope (TEM) with the aim of coupling these two measuring techniques. A known issue when coupling these two methods is that a devise like the DMS samples all PM, and the TEM only soot. To help resolve this issue, a thermal denuder was designed and built to remove all volatile organic compounds (VOC) from the sample prior to entering the DMS. For TEM imaging, soot was either collected directly onto a TEM grid using the thermophoretic effect or collected onto quartz filters with the soot then transferred onto the TEM grids. The direct to grid technique did not work after the denuder due to the gas temperature being too low for the thermophoretic effect; hence the reason to collect some soot using the quartz filters. Soot was removed from the filters using an ethanol wash/sonication technique. Morphology; diameter of gyration, projected area, primary particle size and fractal dimension have…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Semi-Volatile Organic Compounds from a Combined Dual Port Injection/Direct-Injection Technology Light-Duty Gasoline Vehicle

Southwest Research Institute-Robert Fanick, Svitlana Kroll
  • Technical Paper
  • 2019-24-0051
Published 2019-09-09 by SAE International in United States
Gasoline direct injection (GDI) has changed the exhaust composition in comparison with the older port fuel injection (PFI) systems. More recently, light-duty vehicle engine manufactures have combined these two technologies to take advantage of the knock benefits and fuel economy of GDI with the low particulate emission of PFI. These dual injection strategy engines have made a change in the combustion emission composition produced by these engines. Understanding the impact of these changes is essential for automotive companies and aftertreatment developers.A novel sampling system was designed to sample the exhaust generated by a dual injection strategy gasoline vehicle using the United States Federal Test Procedure (FTP). This sampling system was capable of measuring the regulated emissions as well as collecting the entire exhaust from the vehicle for measuring unregulated emissions. For this study, the unregulated emissions included hydrocarbon speciation and semi-volatile organic compounds (SVOC) in the form of polycyclic aromatic hydrocarbons (PAH), nitro-polycyclic aromatic hydrocarbons (NPAH), and oxygenated PAH (Oxy PAH). This novel sampling system allowed the quantification of the particulate-phase SVOC as part of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hybrid Ultra-Low VOC and Non-HAP Rain Erosion Coatings

Aerospace & Defense Technology: August 2019

  • Magazine Article
  • 19AERP08_12
Published 2019-08-01 by SAE International in United States

Developing a rapid-curing rain erosion coating based on a unique glycidyl carbamate (GC) hybrid resin chemistry that offers rapid reactivity and adhesion combined with the erosion, flexibility, weathering and mechanical properties of polyurethane systems.

Numerous military aircraft and shipboard surfaces, such as radomes, antennas, gun shields, wing leading edges, and helicopter blade leading edges, are coated with a specialized erosion-resistant protective coating possessing strict performance requirements. These protective coatings must provide excellent rain erosion resistance, superior mechanical properties, good adhesion to the substrate and meet a host of other metrics outlined in MIL-PRF-32239 and SAE AMS-C- 83231A.

Annotation ability available

Hybrid Ultra-Low VOC and Non-HAP Rain Erosion Coatings

  • Magazine Article
  • TBMG-34877
Published 2019-08-01 by Tech Briefs Media Group in United States

Numerous military aircraft and shipboard surfaces, such as radomes, antennas, gun shields, wing leading edges, and helicopter blade leading edges, are coated with a specialized erosion-resistant protective coating possessing strict performance requirements. These protective coatings must provide excellent rain erosion resistance, superior mechanical properties, good adhesion to the substrate and meet a host of other metrics outlined in MIL-PRF-32239 and SAE AMS-C- 83231A.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Heat Resistant Aluminized Paint

AMS G8 Aerospace Organic Coatings Committee
  • Aerospace Material Specification
  • AMS3604A
  • Current
Published 2019-06-11 by SAE International in United States
This specification establishes requirements for a heat resistant aluminized organic coating with sufficient corrosion and erosion resistance for the finished substrate.
This content contains downloadable datasets
Annotation ability available