Your Selections

Vibration
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

To establish the correlation in between Computer Aided Engineering & physical testing of automotive parts returnable case (Stacktainer).

International Centre for Automotive Technology-Ashish Singh
  • Technical Paper
  • 2019-28-2569
To be published on 2019-11-21 by SAE International in United States
Automotive returnable cases (Stacktainers) are being used to transport the automotive parts through surface & seaways. No automotive manufacturer wants to spend money on woods, paper & cardboard again and again, it`s better to pay once for robust & reusable cases. these provide better protection to parts from its manufacturing to assembly line of vehicle. While transporting, any kind of crack or failure of returnable cases may lead to loss of money, human & time. To ensure the safety, these pallets have to be validated for vibrations coming from surface irregularities, sea waves & load due to stacking of cases one above other. The objective of this study is to establish a correlation in between the physical testing & simulation in Computer added Engineering (CAE) of automotive returnable case (Stacktainers). There are different types of tests considered to validate the returnable case, rough road evaluation, Multi-axial Vibration & strength evaluation. After conducting the physical test & CAE simulation, a correlation & confidence level up to 90% is established.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Noise & Vibration challenges in an Electric Vehicle (Bus), its effect and possible reduction techniques

International Centre for Automotive Technology-Ikshit Shrivastava
  • Technical Paper
  • 2019-28-2493
To be published on 2019-11-21 by SAE International in United States
Ikshit Shrivastava1, Kiranpreet Singh2 1,2 International Centre for Automotive Technology (ICAT), Gurugram, India Introduction: Noise and Vibrations is a vast field of study and has been a constant challenge to Acousticians and designers. IC engines have been in existence since almost 125 years and have given enough room & time to acousticians and engineers to develop materials and tune powertrains to minimize Noise and Vibrations from vehicles. With the advent of technology to evolve alternate fueled powertrains to reduce emissions emitted by IC engines, lot of research is being carried out to develop powertrains particularly in the area of Hybrids & Electrics. Substantial investments are being made by OEMs worldwide on researching xEV domain to tap new motor/ battery technologies for vehicles. Since the technology in xEVs is majorly different, the problems associated with them are also different. IC Engines were known to create Noise in running condition, whereas Electric Vehicles are seen as no noise emitting products. The challenge is not just to create a vehicle with zero noise and vibrations inside of the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

REDUCTION OF STEERING VIBRATION WITH THE APPLICATION OF DYNAMIC TESTING AND ANALYSIS

John Deere India Pvt Ltd.-Amol Pimpale, Prashant Bardia, Pankaj Vaste, Rohit Pawar
  • Technical Paper
  • 2019-28-2421
To be published on 2019-11-21 by SAE International in United States
KEYWORDS: Steering System, Engine Vibrations, Dynamics, Modal Testing, Modal Analysis, ABSTRACT - In modern agriculture, the tractor’s use is indispensable and essential for various operations like cultivation, soil preparation, pulverization and many more. However, despite being efficient machines, tractors may be subjected to different level of vibrations in various parts of their structure. The vibration often plays the key cause of invalidation and component failures and also, affecting the ride and comfort. Since it is known that such vibration factors can affect the behavior in many ways, an understanding of their dynamic response is warranted. In this paper, case study related to reduction of steering system vibration is presented. Objective and Background: Vibration reduction is linked with the reduction either at source or on path. For such, it is necessary to know the reality of machines, component and mechanisms to mitigate the vibration levels on the tractor. From the testing and analysis of the components, it is possible to calculate the dynamic properties and vibration average level. The vibration reduction decreases the damages caused by…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Novel Method of Improving Ride Comfort of Two Wheeler by Optimization of Seat Parameters

Carmel Polytechnic College-Francis Augustine Joseph
Saingits College of Engineering-Arun Kottayil Varghese
Published 2019-10-11 by SAE International in United States
Two-wheeler plays a significant role in personal transportation in India. People prefer two-wheelers, which has better fuel economy, comfort, and performance. It is vital to enhance comfort, as the seat is in direct contact with the user. Better user comfort improves the vehicle feel and behavior. Dynamic comfort analysis is necessary to understand and improve the vibration characteristics of the human-seat system. The vibration characteristics under analysis are Natural frequency, Maximum transmissibility, Attenuation frequency, and Transmissibility at 6 Hz. A test set-up was developed to collect data samples with different seat characteristics. The data collected from the seat are IFD, Hysteresis, Air-Permeability, Resilience, Thickness, and Mass. The relation between the seat parameters and vibration characteristic is established by statistically analyzing the data. Best seat was identified by ranking vibration characteristics. Correlation analysis determines the best seat by subjective rating of the sample and seat vibration ranking.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Effective Powertrain Isolation of Off-Highway Vehicles

John Deere Technology Center-Devendra Mandke, Balavardhan Reddy Dasabai, Sandeep Burli
Vellore Institute of Technology-Pushpak Sakhala, Sharan Chandran
Published 2019-10-11 by SAE International in United States
A Powertrain is one of the major sources of excitation of a vehicle vibration and noise in off highway vehicles. It typically has a significant contribution in whole vehicle NVH characteristics. The structure borne energy of the powertrain is transmitted to the chassis and rest of the vehicle through powertrain mounts. Hence, it is of prime importance to design an effective powertrain mounting system in such a way that it will reduce vehicle vibrations to improve vehicle NVH as well as ride comfort, resulting in an effective vibration isolation system and ensuring long service life. In this paper, a newly developed an analytical tool for effective design of isolation system is discussed. For this model, powertrain is considered as a six degree-of-freedom system. Analytical calculations are implemented to find optimum mount design parameters i.e. stiffness, orientation and position of isolators to meet desired NVH targets. To achieve a good isolation characteristic, there is a necessity of decoupling of rigid body modes using optimization of various decoupling methods, which further helps in reducing the forces transmitted…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Experimental Investigation on Mechanical Properties and Vibration Damping Frequency Factor of Kenaf Fiber Reinforced Epoxy Composite

Hindustan Institute of Technology and Science-Sathish Kumar Rajamanickam, Sivakumar Sattanathan, Deenadayalan Ganapathy, Joshuva Arockia Dhanraj
Sri Krishna College of Engineering and Technology-Vishnuvardhan Ravichandran
Published 2019-10-11 by SAE International in United States
Kenaf Fiber regarded as industrial crop for different applications. It is one of the most important plants cultivated for natural fibers globally. Natural fibers such as kenaf fibers are getting attention of researchers and industries to utilize it in different composites due to its biodegradable nature. In this present investigation mechanical properties, vibration damping frequency factor and thermogravimetric analysis of kenaf fiber reinforced epoxy composite (KFREC) have been evaluated and reported. The tests were conducted with different weight categories of kenaf fiber such as 20%, 25%, 30% and 35%. The effects of fiber content on tensile, flexural, impact strengths, hardness and thermal decomposition properties of the composite were determined. The failure mechanism and damage features of the KFREC were categorized using Scanning Electron Microscope (SEM). The results indicate that the increase in the fiber content decreases the damping vibration factor (ζ) correspondingly. The lowest value of the damping vibration factor was recorded as 0.033 for 35% weight content of Kenaf fiber in the composite. The maximum value of hardness, tensile, flexural, and impact strengths were…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Optimizing NVH for EVs

Automotive Engineering: October 2019

Lindsay Brooke
  • Magazine Article
  • 19AUTP10_03
Published 2019-10-01 by SAE International in United States

Unique acoustic and harmonic challenges require an integrated approach to simulation and analysis. An expert at Adaptive Corp. explains.

Despite global sales market share stuck at single-digit levels, electric vehicles (EVs) are steadily filling the development pipelines at major OEMs. And as engineers are acutely aware, EVs bring a paradigm shift in the noise, vibration and harshness (NVH) arena. Their harmonic spectra are dramatically different than those of even the smoothest, most refined combustion-engine vehicles and hybrids.

Annotation ability available
new

Fluid-Filled Frequency-Tunable Mass Damper

  • Magazine Article
  • TBMG-35253
Published 2019-10-01 by Tech Briefs Media Group in United States

Innovators at Marshall Space Flight Center developed the fluid-filled Frequency-Tunable Mass Damper (FTMD) technology that allows for significant distribution of loads while also providing a simple mechanism that allows for the capability to change its frequency of mitigation with negligible impact on the damper system. For existing fluid-filled pipes, ducts, ballast tanks, etc., the fluid can be leveraged to provide vibration mitigation. This new technology enables structural engineers to set and change the fundamental mitigation attributes of the mass damper system with little to no modification of the fluid container.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Influence of Amount of Phenolic Resin on the Tribological Performance of Environment-Friendly Friction Materials

Indian Institute of Technology Delhi-Navnath Kalel, Jayashree Bijwe, Ashish Darpe
Published 2019-09-15 by SAE International in United States
The binder in friction materials (FMs) plays a very crucial role which binds all the ingredients firmly so that they can function the way they were supposed to do. The type and amount of binder, both are very critical for manipulating the desired performance properties, which mainly include friction and its sensitivity towards operating parameters, wear resistance, counter-face friendliness, noise, vibration etc. Although a lot is reported on the influence of types of resins on tribo-performance of FMs, hardly any paper pertains to paint this on a bigger canvas with more detailed understanding of the amount of resin in FMs on the performance properties.The present study addresses these aspects by developing brake-pads with identical composition but varying in amount (wt. %) of straight phenolic resins (6, 8, 10 and 12) by compensating the difference with barite, a space filler. The ingredients did not contain asbestos, Copper, Zinc, etc. and hence were environment friendly. Tribological performance of the composites was evaluated on a full-scale inertia brake dynamometer following JASO C406 test schedule. With increase in the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Squeal Noise Improvement by High Damping & High Stiffness under Layer Material

ADVICS Co., Ltd.-Shusuke Suzuki
ADVICS North America, Inc.-Masato Nishioka, Leanne Johnson, Sean Rosalez
Published 2019-09-15 by SAE International in United States
The purpose of this research is to clarify how damping characteristics of Under Layer (hereafter “UL”) material in the brake pads (hereafter “PAD”) influences brake squeal noise performance. In this study, UL material structure and dynamic viscoelasticity, for two different types of UL formulations are investigated. In addition, PAD damping ratio and squeal noise performance for multiple UL formulations are verified. As a result, the raw material orientation is determined based on manufacturing method, and it causes the UL material’s anisotropic properties. Dynamic viscoelasticity are dependent on the direction in which they are measured. In particular, the loss modulus, which is the damping element of dynamic viscoelasticity, is higher in the direction of the raw material orientation for the high damping and high stiffness UL formulation. In addition, it was confirmed that this loss modulus in the direction of the raw material orientation is effective for bending vibration. In the verification, the study focuses on the PAD damping ratio and squeal noise performance in the 1st bending vibration of the PAD. It is clarified that…
This content contains downloadable datasets
Annotation ability available