The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Vehicle drivers
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of the Active Sound Generation Technology using Motor Driven Power Steering System

Hyundai Motor Co.-Kyoung-Jin Chang
Mdynamix AG-Leonhard Angerpointner, Dominik Schubert, Matthias Niegl
  • Technical Paper
  • 2020-01-1536
To be published on 2020-06-03 by SAE International in United States
As original engine sound is usually not enough to satisfy the driver’s desire for the sporty and fascinating sound, active noise control (ANC) and active sound design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicle using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifier or external actuators. This paper presents a new technology of generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) which is already mounted in vehicle. Firstly, an algorithm of this technology, called an active sound generation (ASG), is introduced with those signal conversion process, and then the high frequency noise issue and its countermeasure are presented. Secondly, ASG test bench is designed using a motor driven power steering (MDPS) system and then it is checked if ASG has any influence on an original function of MDPS. Thirdly, motor-induced vibration is measured in the transfer path and then the appropriate level…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

On Prediction of Automotive Clutch Torsional Vibrations

Theofilos Gkinis PhD
Loughborough Univ-Homer Rahnejat
  • Technical Paper
  • 2020-01-1508
To be published on 2020-06-03 by SAE International in United States
Automotive clutches are prone to rigid body torsional vibrations during engagement, a phenomenon referred to as take-up judder. This is also accompanied by fore and aft vehicle motions. Aside from driver behaviour in sudden release of clutch pedal (resulting in loss of clamp load), and type and state of friction lining material, the interfacial slip speed and contact temperature can significantly affect the propensity of clutch to judder. The ability to accurately predict the judder phenomenon relies significantly on the determination of operational frictional characteristics of the clutch lining material. This is dependent upon contact pressure, temperature and interfacial slip speed. The current study investigates the ability to predict clutch judder vibration with the degree of complexity of the torsional dynamics model. For this purpose, the results from a four and nine degrees of freedom dynamics models are compared and discussed. Subsequently, the predictions are compared with the acquired data from an automotive driveline test rig. It is shown that the complexity of the dynamic model, intended for the study of a clutch system, can…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CFD Analysis and Validation of Automotive Windshield De-Fogging Simulation

Mahindra & Mahindra, Ltd.https://www.sae-Gopinath Sathianarayanan
  • Technical Paper
  • 2020-28-0039
To be published on 2020-04-30 by SAE International in United States
Nowadays Climate component system plays a vital role in JD power rating of automotive vehicle. Apart from customer point of view, stringent homologation norms pose challenge in designing climate control system components. At extreme cold climate conditions either mist/ fog forms on the automobile windshield. This makes visibility issue on driver/Co driver side. To overcome this issue efficient demister system is required. Development of Demister system requires thorough knowledge on velocity spread over windscreen and thermal performance of heater (HVAC). This work is aimed for simulating windshield demisting patterns of a vehicle as described by ECC norms. New methodology was developed to simulate the actual behaviour of condensation and evaporation of mist on the windscreen. Transient demisting patterns were simulated with the CFD code and validated with experimental test results.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Formula SAE Data Acquisition and Detailed Analysis of a Lap

Georgia Southern University-Connor M. Ashford, Aniruddha Mitra
  • Technical Paper
  • 2020-01-0544
To be published on 2020-04-14 by SAE International in United States
Formula Society of Automotive Engineers (FSAE) International is a student design competition organized by SAE. The student design involves engineering and manufacturing a formula style racecar and evaluating its performance. Testing and validation of the vehicle is an integral part of the design and performance during the competition. At the collegiate level the drivers are at the amateur level. As a result, the human factor plays a significant role in the outcome of the dynamic events. In order to reduce the uncertainty factor and improve the general performance, driver training is necessary. Instead of overall performance of the driver based on individual lap, our current research focuses on the more detailed components of the driver’s actions throughout different sections of the lap. A complete lap consists of several components, such as, straight line acceleration and braking, max and min radius cornering, slalom or “S” movements, and bus stops or quick braking and turning. In order to evaluate the performance of each driver in each of these components, an AiM data acquisition system is mounted in…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effects of a Probability-Based Green Light Optimized Speed Advisory on Dilemma Zone Exposure

Indiana Department of Transportation-James Sturdevant
Purdue University-Enrique Saldivar-Carranza, Howell Li, Woosung Kim, Jijo Mathew, Darcy Bullock
  • Technical Paper
  • 2020-01-0116
To be published on 2020-04-14 by SAE International in United States
Green Light Optimized Speed Advisory (GLOSA) systems have the objective of providing a recommended speed to arrive at a traffic signal during the green phase of the cycle. GLOSA has been shown to decrease travel time, fuel consumption, and carbon emissions; simultaneously, it has been demonstrated to increase driver and passenger comfort. Few studies have been conducted using historical cycle-by-cycle phase probabilities to assess the performance of a speed advisory capable of recommending a speed for various traffic signal operating modes (fixed-time, semi-actuated, and fully-actuated). In this study, a GLOSA system based on phase probability is proposed. The probability is calculated prior to each trip from a previous week’s, same time-of-day (TOD) and day-of-week (DOW) period, traffic signal controller high-resolution event data. By utilizing this advisory method, real-time communications from the vehicle to infrastructure (V2I) become unnecessary, eliminating data-loss related issues. The effects of three different advice approaches (conservative, balanced, and aggressive) on dilemma zone exposure are analyzed. Proof of concept is carried out by virtually driving through a test-route composed of an arterial that…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Negotiating the Steering Control Authority within Haptic Shared Control Framework

University of North Carolina Charlotte-Vahid Izadi, Amir H. Ghasemi, Pouria Karimi Shahri
  • Technical Paper
  • 2020-01-1031
To be published on 2020-04-14 by SAE International in United States
Communication and cooperation among team members can be enhanced significantly with physical interaction. Successful collaboration requires the integration of the individual partners' intentions into a shared action plan, which may involve a continuous negotiation of intentions and roles. This project aims to explore the underlying process of intention integration and develop models for consensus reaching in a haptic shared control framework. We pay particular attention to the role of impedance modulation as a mechanism for negotiation of intentions across the physical or haptic channel. We present an optimal control-based methodology for an automation system to modulate its impedance to either gain or yield the authority to the human driver.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Camera-Based Driver State Monitoring System for Cost-Effective Embedded Solution

Hitachi America, Ltd.-Xunfei Zhou, Tobias Wingert, Maximilian Sauer, Subrata Kundu
  • Technical Paper
  • 2020-01-1210
To be published on 2020-04-14 by SAE International in United States
To prevent the severe consequences of unsafe driving behaviors, it is crucial to monitor and analyze the state of the driver. Developing an effective driver state monitoring (DSM) systems is particularly challenging due to limited computation capabilities of embedded systems in automobiles and the need for finishing processing in real-time. However, most of the existing research work was conducted in a lab environment with expensive equipment while lacking in-car benchmarking and validation. In this paper, a DSM system that estimates driver's alertness and drowsiness level as well as performs emotion detection built with a cost-effective embedded system is presented. The proposed system consists of a mono camera that captures driver's facial image in real-time and a machine learning based detection algorithm that detects facial landmark points and use that information to infer driver's state. In the detection module, driver's distraction level is evaluated by estimating head-pose through solving a perspective-n-point problem, drowsiness level is estimated by processing eyelid related parameters extracted from facial keypoints data, and machine learning approach was used for emotion state monitoring.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Heavy Vehicles Kinematics of Automatic Emergency Braking Test Track Scenarios

NHTSA-Devin Elsasser
Transportation Research Center Inc.-M. Kamel Salaani, Christopher Boday
  • Technical Paper
  • 2020-01-0995
To be published on 2020-04-14 by SAE International in United States
This paper presents the test track scenario design and analysis used to estimate the performances of heavy vehicles equipped with forward collision warning and automatic emergency braking systems in rear-end crash scenarios. The first part of this design and analysis study was to develop parameters for brake inputs in test track scenarios simulating a driver that has insufficiently applied the brakes to avoid a rear-end collision. In the second part of this study, the deceleration limits imposed by heavy vehicles mechanics and brake systems are used to estimate automatic emergency braking performance benefits with respect to minimum stopping distance requirements set by Federal Motor Vehicle Safety Standards. The results of this study were used to complete the test track procedures and show that all heavy vehicles meeting regulatory stopping distance requirements have the braking capacity to demonstrate rear-end crash avoidance improvements in the developed tests.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of the Defrost Performance Evaluation Technology in Automotive using Design Optimization Analysis Method

Hyundai Mobis-Hyeonseok Seo, Jinwon Seo, Bongkeun Choi
  • Technical Paper
  • 2020-01-0155
To be published on 2020-04-14 by SAE International in United States
In this study, we developed the defrost performance evaluation technology using the multi-objective optimization method based on the CFD. The defrosting is one of the key factors to ensure the drivers’ safety using the forced flow having proper temperature from HVAC during drive. There are many factors affecting the defrost performance, but the configurations of guide-vane and discharge angles in the center DEF duct section which are main design factors of the defrost performance in automotive, so these were set to the design parameters for this study. For the shape-optimization study, the discharge mass flow rate from the HVAC which is transferred to the windshield and the discharge areas in the center DEF duct were set to the response parameters. And then, the standard deviation value of mass flow rate on the selected discharge areas checking the uniformity of discharge flow was set to the objective function to find the optimal design. The results on the windshield from optimization analysis were quantified from some kind of standards to evaluate the defrost performance, in particular, the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Smart Measuring System for Vehicle Dynamics Testing

Politecnico di Torino-Enrico Galvagno, Stefano Mauro, Stefano Pastorelli, Antonio Tota
  • Technical Paper
  • 2020-01-1066
To be published on 2020-04-14 by SAE International in United States
A fast measurement of the car handling performance is highly desirable to easily compare and assess different car setup, e.g. tires size and supplier, suspension settings, etc. Instead of the expensive professional equipment normally used by car manufacturers for vehicle testing, the authors propose a low cost solution that is nevertheless accurate enough for comparative evaluations. The paper presents a novel measuring system for vehicle dynamics analysis, which is based uniquely on the sensors embedded in a smartphone and completely independent on the signals available through vehicle CAN bus. Data from tri-axial accelerometer, gyroscope, GPS and camera are jointly used to compute the typical quantities analyzed in vehicle dynamics applications. In addition to signals like yaw rate, lateral and longitudinal acceleration, vehicle speed and trajectory, normally available when working with Inertial Measurement Units (IMU) equipped with GPS, in the present application also the steering wheel angle is measured by artificial vision algorithms that use the phone camera.. The latter signal, besides being important for identifying the maneuver imposed by the driver, it enables the usage…