Your Selections

Vehicle acceleration
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Sensor Fusion Concept for Improved Rotational Speed Measurement in Small Engines

Institute of Electrical Measurement and Measurement Signal P-Markus Neumayer, Thomas Bretterklieber, Thomas Suppan
  • Technical Paper
  • 2019-32-0519
To be published on 2020-01-24 by Society of Automotive Engineers of Japan in Japan
Future developments for small engines, e.g. engines for handheld working tools, like chain saws require the integration of ECU-systems for engine control. For small engines often only a rotational speed senor is available. The application of additional engine sensors is in many cases unwanted, e.g. due to cost aspects and additional wiring. The lack of sensor data requires tailored control strategies and signal processing techniques to infer information about the engine from the sensor data. E.g. for rotational speed sensors the Δω method has been proposed, where the load is estimated from the temporal variation of the rotational speed. This approach requires a rotational speed sensor with sufficient angular resolution. In this paper we present a simulation study for a sensor fusion concept to improve the temporal resolution of engine speed measurements for low cost engines by means of an additional vibration sensor. The rotational sensor of the engine is assumed to have insufficient resolution to determine variations of the rotational speed over an engine revolution. However, variations of the rotational speed of the engine…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Acoustics and Drivability as the Main Drivers for Customer Satisfaction for electrified 2-Wheeler

AVL List GmbH, Austria-Christian Hubmann, Patrick Falk, Bernhard Graf, Hubert Friedl
  • Technical Paper
  • 2019-32-0525
To be published on 2020-01-24 by Society of Automotive Engineers of Japan in Japan
Along with the global trend for electrification, also motorcycle industry is entering new spheres of highly advanced products and is increasing customer demands for electric mobility. Beside hard facts such as performance, driving range, durability and ease of use, also the brand specific attributes such as styling, driveability and even sound for electrified 2-wheeler are very emotional, unique selling prepositions. To determine the subjective parameters for driveability and acoustics, AVL has developed dedicated tools and methods to quantify these attributes with high maturity.In terms of acoustics and NVH there are several crucial noise sources within electrified powertrains, which have to be treated with high attention from the initial development phase to avoid any kind of unforeseen annoyances: E-motor with inverter, transmission and secondary drive are most relevant. This issue becomes even more important with the ongoing market trend of products featuring increased power.Electrified motorcycles commonly are expected to offer supreme acceleration performance, but even this attribute may lead into driver's disappointment if throttle response and overall vehicle driveability parameters are inhomogeneous. The driveability and the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

ALL-WHEEL DRIVE ELECTRIC VEHICLE MODELING AND PERFORMANCE OPTIMIZATION

Department of Mechanical and Aerospace Engineering, Politecn-H. de Carvalho Pinheiro, E. Galanzino, A. Messana, L. Sisca, A. Ferraris, A. G. Airale, M. Carello
  • Technical Paper
  • 2019-36-0197
Published 2020-01-13 by SAE International in United States
Electrification of the powertrain is one of the most promising trends in the automotive industry. Among the novel architectures, this paper aims to study the latent advantages provided by in-wheel motors, particularly an All-Wheel-Drive powertrain composed by four electric machines directly connected to each wheel-hub of a high performance vehicle. Beyond the well-known packaging advantage allowed by the in-wheel motor, the presence of four independent torque sources allows more flexible and complex control strategies of torque allocation. The study explores three different control modules working simultaneously: torque vectoring, regenerative braking and energy efficiency optimization protocol. The main objectives of the project are: improving handling, measured through the lap time of the virtual driver in a simulated track, and enhance energy efficiency, assessed by the battery state of charge variation during standard events. The torque vectoring strategy is based on a feedback PID controller working in parallel to a feedforward logic that predict the desired behavior based on the driver demands (such as steering angle) and vehicle states (chassis accelerations and velocities). The regenerative braking manages…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Engine calibration and driveability evaluation of a racecar

Federal University of Santa Maria-Aleff Goulart, Alexandre Piccini, Alice Müller, Felipe Balbom, Mario Martins, Pedro Carvalho
  • Technical Paper
  • 2019-36-0126
Published 2020-01-13 by SAE International in United States
The passenger car automakers are always competing to excel in vehicle characteristics related to passenger comfort and driveability aspects. The engine calibration is a theoretical and experimental procedure with the intention to extract maximum efficiency from the engine and guarantee satisfactory levels of driving for both conventional and racing cars. This paper describes the calibration procedure of a Formula SAE race car engine. The engine was a four cylinder 600 cm3 four-strokes with modified intake and exhaust systems, controlled by an engine control unit (Motec M800 ECU). These engines present optimized characteristics for high speed, in exchange for some combustion degradation in some specific operating conditions at low speed that may impair vehicle driveability. Therefore, good tip-in reaction and the progression of the torque delivery are fundamental criteria to increase the vehicle performance, specially, to those submitted to short acceleration distances. The related criteria to the vehicle dynamic comfort has objective values to measure the abrupt engine speed transactions, jerks and acceleration variability related to torque variation. Improvement on such parameters can be obtained by…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Applications of Strain Measurements to Improve Results on Transfer Path Analysis

Centro Federal de Educação Tecnológica de Minas Gerais-C. A. P. Melo
Escola de Engenharia de São Carlos, Universidade de São Paul-A. C. R. Ramos, L.P.R de Oliveira
  • Technical Paper
  • 2019-36-0323
Published 2020-01-13 by SAE International in United States
Vehicles with lower noise levels and better levels of vibratory comfort for passengers made the area of noise, vibration and harshness (NVH) one of the main areas related to the perception of vehicle quality. Several approaches on the contribution of transfer paths have been studied to define the propagation energy in vehicular structures. Transfer Path Analysis (TPA) is a tool to improve NVH performance with the primary goal of reducing and improving perceived vibrations and noise in the cabin vehicle by occupants. Indirect methods are especially important in cases where the force signals are immeasurable in practice in terms of cost and space for sensor couplings, in the measurement configuration, and particularly in the case of distributed forces. The matrix inversion method, perhaps the most popular classic TPA, identifies operational forces using passive body acceleration. However, removal of the source can change the dynamic characteristics of the assembled structure and increase the time of the experiment, which results in misleading information in the measurements. For this reason, the inversion operation of the acceleration matrix can…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Comparison between the WLTC and the FTP-75 driving cycles applied to a 1.4 L light-duty vehicle running on ethanol

Federal University of Santa Maria-Maria F. P. Mazer, Leonardo S. Hatschbach, Igor R. dos Santos, Juliano P. Silveira, Roberto A. Garlet, Mario E. S. Martins, Macklini Dalla Nora
  • Technical Paper
  • 2019-36-0144
Published 2020-01-13 by SAE International in United States
The forecast scenarios regarding the environmental pollution raises a question whether the current vehicle emission certification is reliable enough to assure fleet agreement with the legal limits. Type approval tests have been performed on chassis dynamometer in order to evaluate the emission factors and fuel consumption for passenger cars. Standardized procedures such as the FTP-75 proposed in the United States (currently incorporated in the Brazilian legislation) and the Worldwide harmonized Light vehicles Test Cycle (WLTC), a transient driving cycle model designed by the European Union to overcome the shortcomings of the New European Driving Cycle (NEDC), are discussed in this paper. Both cycles were performed in a chassis dynamometer with a flex-fuel passenger car running on ethanol blend (E92W08). The driver, vehicle and fuel were kept constant so the comparison between the cycles would not be compromised. The vehicle chosen was a 1.4 dm3 displaced volume FIAT sedan with maximum power of 60 kW at 5500 rpm and maximum torque of 122 Nm at 2250 rpm. The cycle dynamics and the engine operation points were…
This content contains downloadable datasets
Annotation ability available

Electronic Differential Control of Rear-Wheel Independent-Drive Electric Vehicle

SAE International Journal of Vehicle Dynamics, Stability, and NVH

China-Hang Yun
Jiangsu University, China-Ren He
  • Journal Article
  • 10-04-01-0004
Published 2019-12-02 by SAE International in United States
To track desired slip ratios and desired longitudinal speeds at the centers of driving wheels in the curve, this article proposes a hierarchical structured electronic differential control (EDC) of rear-wheel independent-drive electric vehicle (EV). In the high-level control, a fuzzy algorithm-based coefficient is computed according to the driver’s emotional intention of acceleration. The fuzzy algorithm-based coefficient is used to correct the desired driving torque of vehicle transmitting to the medium-level control. In the medium-level control, an optimization algorithm is developed to allocate the desired torques with requirement of as much accurate yaw moment as possible by the desired driving torque of the vehicle and yaw moment. And the desired longitudinal speeds at the centers of the rear left and right wheels are corrected twice, respectively, by Ackermann steering principle, considering the slip angle of the wheel and yaw moment. Based on the desired torques and desired longitudinal speeds at the centers of the rear left and right wheels from the medium-level control, desired slip ratios and desired angular speeds of the rear left and right…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Ride-Comfort Analysis for Commercial Truck Using MATLAB Simulink

ARAI Academy-Sarnab Debnath
Automotive Research Association of India-Mohammad Rafiq Agrewale
  • Technical Paper
  • 2019-28-2428
Published 2019-11-21 by SAE International in United States
Ride Comfort forms a core design aspect for suspension and is to be considered as primary requirement for vehicle performance in terms of drivability and uptime of passenger. Maintaining a balance between ride comfort and handling poses a major challenge to finalize the suspension specifications. The objective of this project it to perform ride- comfort analysis for a commercial truck using MATLAB Simulink. First, benchmarking was carried out on a 4x2 commercial truck and the physical parameters were obtained. Further, a mathematical model is developed using MATLAB Simulink R2015a and acceleration- time data is collected. An experimentation was carried out on the truck at speeds of 20 kmph, 30 kmph, 40 kmph and 50 kmph over a single hump to obtain actual acceleration time domain data. The model is then correlated with actual test over a single hump. This is followed by running the vehicle on Class A, B & C road profiles to account for random vibrations. Similarly, a simulation is done on MATLAB Simulink and a correlation is established between simulated and actual…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Novel Approach on Range Prediction of a Hydrogen Fuel Cell Electric Truck

VE Commercial Vehicles, Ltd.-C Venkatesh Chandrasekar, L R Amruth Kumar
  • Technical Paper
  • 2019-28-2514
Published 2019-11-21 by SAE International in United States
Today’s growing commercial vehicle population creates a demand for fossil fuel surplus requirement and develops highly polluted urban cities in the world. Hence addressing both factors is very much essential. Battery electric vehicles are with limited vehicle range and higher charging time. So it is not suitable for the long-haul application. In further the hydrogen fuel cell-based electric vehicles are the future of the commercial electric vehicle to achieve long-range, zero-emission and alternate for reducing fossil fuels requirement.The hydrogen fuel cell electric vehicle range, it means the total distance covered by the vehicle in a single filling of hydrogen into the onboard cylinders. And here the prediction of the vehicle range is essential based on optimal parameters; vehicle acceleration, speed, trip time etc. before the start of the trip.If the driver starts the vehicle without range prediction and optimum driving strategy, will be led into midway vehicle stoppage and excessive energy consumption of the trip.This paper deals with different methods of electric vehicle range prediction and optimization, benefits and demerits are listed and discussed, to…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design Analysis and Simulations of Components of an All-Terrain Vehicle

BITS Pilani-Pranjal Shukla, Konark Joshi, Utkarsh Rastogi, Ajith Reddy Moola
Published 2019-10-11 by SAE International in United States
A single seater All-Terrain Vehicle (ATV) is conceptualized in this paper which covers the extent of designing and simulations ranging from static structural, fatigue analysis, explicit dynamics etc. Solidworks and Ansys Workbench have been used as the tools for the simulation. Our aim was to design and fabricate a vehicle which is light weight (<200Kgs), easily maneuverable in harsh driving conditions and also scores high in affordability and maintenance.This report also contains the design consideration of the chassis, steering, suspension, braking, powertrain. Simulation results of components like hubs, knuckles, A-Arms, chassis are done with special focus on modelling based on real time forces and behaviors. MATLAB Simulink models are used and explained for the suspension model.The vehicle was fabricated in-house using various fabrication methods of TIG Welding, Vertical CNC machines etc. The strength tests for the specimens of welding were checked for the safety of the chassis. The vehicle was tested on tracks for braking, steering and acceleration and further modifications were made in the design to incorporate the iterations.
This content contains downloadable datasets
Annotation ability available