Your Selections

Valves
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

CNG injector performance analysis against variation of physical and electrical parameters: An alternate fuel approach

Noida Inst. Of Engineering Tech.-Udit Kaul
  • Technical Paper
  • 2019-28-2389
To be published on 2019-11-21 by SAE International in United States
Authors: Udit Kaul, Mahendarpal and Madhusudan Joshi Organization: International Centre for Automotive Technology, Manesar Introduction: In this paper, a study concerning multi-point CNG injectors (MPCI) or commonly known as injector rail would be presented. Here we would make a detailed analysis regarding the performance of MPCIs due to variation in physical and electrical parameters. In this case multiple MPCIs would be considered and there electrical and dimension parameters would be compared with respect to their performance. The performance comparison would be done based on the common compliance standard under standard laboratory conditions. We would also like to propose the optimal combination of electrical and dimension parameters for better performance. The variables to be considered for the proposed study are: injector valve open/shut timing, injector dimension, voltage levels, solenoid types etc. Key words : multi-point CNG injectors, injector valve, solenoid
 

Engine Valve Train Dynamic Analysis using 1-D Simulation Approach

Ajay Nain
  • Technical Paper
  • 2019-28-2422
To be published on 2019-11-21 by SAE International in United States
In order to reduce engine development timing and cost, a numerical calculation used to evaluate valve train systems. This paper discusses the work done on kinematic and dynamic analysis of Valve Train (VT) system of a diesel engine by using 1-D Ricardo Valdyn software. The goal is to meet optimum intake, exhaust valve timing requirement, maximize valve open area and 20% overspeed requirement. Valve train model is prepared and inputs like mass and stiffness are estimated from actual weighing and finite element approach respectively. Simulation model is used for predicting valve bounce speed, valve displacement, cam-follower contact stress and strain in the rocker arm. Initially, Kinematic analysis is carried out to study the change in valve motion characteristics such as cam contour radius, tappet contact eccentricity etc. Further to this, dynamic analysis is carried out to assess forces and stresses on valve train components. Effect of cam tappet contact stresses, buckling load on push rod, spring surge, ratio of spring force to inertia force, valve seating velocity at increased speed condition etc. are discussed in…
 

A Comprehensive Study on BSVI Turbocharger Selection and its Deterioration with Closed Crank-Case Ventilation in Heavy Commercial Vehicles

VE Commercial Vehicle Ltd-Juzer Jaliwala
VE Commercial Vehicles Ltd-Aravind Mohan, Kunaal Bhagat
  • Technical Paper
  • 2019-24-0061
To be published on 2019-09-09 by SAE International in United States
BSVI Norms getting implemented in India by April 2020 and every heavy commercial vehicle OEMs viewing it as one of the greatest challenge, there are many factors and trade off that should be considered at every step of the project. The newly developed engine in BSVI will be equipped with actuators like Intake Throttle Valve, Exhaust Throttle Valve and combination of these flap operations with turbocharger output plays a prominent role in controlling performance and emission. Turbocharger selection plays major role in engine and vehicle performance on road and testcell. Turbo charger plays an apex role in providing both required boost to the engine performance and set up a control on emissions. This study focusses on the use of different AVU (Air Valve Unit) controlled waste gate turbochargers from different suppliers and how it’s getting matched with the engine performance requirements. The fluctuations observed in boost pressure at higher loads due to the waste gate operational inconsistency and its solution is also explained. The legislation stresses on importance of positive crank case ventilation (connected to…
 

A simple approach for the estimation of the exhaust noise source at the valves

CMT-Universitat Politècnica de València-Antonio J. Torregrosa, Pablo Olmeda
Renault SAS-Jean-luc Adam, Florent Morin, Maxime Dubarry
  • Technical Paper
  • 2019-24-0174
To be published on 2019-09-09 by SAE International in United States
Exhaust noise emission is the result of the propagation of pressure perturbations along the exhaust line. Such perturbations are primarily originated by the discharge of hot, high-speed gases through the exhaust valves. These gases do not simply displace the gases present in the exhaust port but compress them, giving rise to the perturbation mentioned above. Therefore, any attempt at the prediction of exhaust noise is based on the knowledge of the instantaneous mass flow rate across the exhaust valves. However, this magnitude is not readily accessible to measurements, and it is thus imperative to use predictive models. It is apparent that, while information on the instantaneous mass flow through the exhaust valves may be obtained from well-validated commercial gas-dynamic codes, the data required is not always available or fully defined at the time of starting the design of an exhaust line. It is therefore desirable to be able to estimate the instantaneous mass flow passing through the valve starting from a reduced set of geometrical and operation data, which can be either representative for a…
 

Valve Flow Coefficients under Engine Operation Conditions: Piston Influence and Flow Pulsation

FKFS-Michael Grill
University of Stuttgart-Sven Fasse, Michael Bargende
  • Technical Paper
  • 2019-24-0003
To be published on 2019-09-09 by SAE International in United States
Engine valve flow coefficients are used to describe the flow throughput performance of engine valve/port designs, and to model gas exchange in 0D/1D engine simulation. Valve flow coefficients are normally estimated at a stationary flow test bench, separately for intake and exhaust side, in the absence of the piston. However, engine operation differs from this setup; i. a. the piston might interact with valve flow around scavenging top dead center, and instead of steady boundary conditions, valve flow is nearly always subjected to pressure pulsations, due to pressure wave reflections within the gas exchange ports. In this work the influences of piston position and pressure pulsation on valve flow coefficients are investigated for different SI engine geometries by means of 3D CFD and measurements at an enhanced flow test bench. In the past, most research work on valve flow coefficients left aside possible piston influence and, for dynamic boundary conditions, it largely omitted subtraction of the gas inertia effects, which are already covered by 1D simulation. In this work, concerning piston influence, various valve overlap…
 

Evaluation of Hybrid Electric Turbocharging for Medium Speed Engines

Delft University of Technology-K. Visser
Royal IHC-B.T.W. Mestemaker, J.A. Westhoeve
  • Technical Paper
  • 2019-24-0188
To be published on 2019-09-09 by SAE International in United States
This paper investigates the effects of hybrid electric turbocharging on the total system efficiency, the transient loading capability and the operational range of maritime engines, including the effects of the air control valves (cylinder bypass & charge air blow-off valve). An existing and validated mean-value first principle engine model has been adapted to simulate the operating principle of a combustion engine with a hybrid electric turbocharger system. The simulation of power take off/in together with an air excess ratio control strategy is included by means of torque addition to/removal from the turbocharger shaft and limiting it with eight boundary controllers. The analysis of the simulation results illustrates a trade-off between the increase of the system efficiency on one side and the transient loading capability of the engine on the other side. With turbocompounding, the system efficiency can be increased at the expense of a deteriorated gas exchange process and an increased thermal loading of the engine. And assisting the turbocharger for steady state operation leads to a smaller operating envelope due to the limitation of…
 
new

Self-Assembled Micro-Organogels Enable 3D Printing of Silicone Structures

  • Magazine Article
  • TBMG-34752
Published 2019-07-01 by Tech Briefs Media Group in United States

For the millions of people every year who have or need medical devices implanted, an advancement in 3D printing technology could enable significantly quicker implantation of devices that are stronger, less expensive, more flexible, and more comfortable than anything currently available. Such devices are molded, which could take days or weeks to create customized parts designed to fit an individual patient. The 3D printing method cuts that time to hours; additionally, small and complex devices such as pressure-sensitive valves, simply cannot be molded in one step.

 
new

Development of Impact Force 1D Model for Powertrain Component

Denso-Yuma Yoshimaru, Makoto Kondo, Yukie Omuro, Masashi Inaba
Published 2019-06-05 by SAE International in United States
Electromagnetic valves excellent in sealing properties and resistant to sliding are often used in powertrain equipment installed in gasoline- or diesel-engine vehicles. An electromagnetic valve has the function of moving internal valve members by means of electromagnetic force generated by the application of a voltage and thereby changing the flow path. When an electromagnetic valve operates, however, the valve members impact with one another, emitting impact noise caused by it. With the requirement for low noise in electromagnetic valves having become stricter recently from the viewpoint of comfort in the passenger compartment, predicting the noise is needed at the design stage.With this background, this paper describes the development of a 1D model of impact force that will enable the noise and the product performance to be examined simultaneously for a GDI (gasoline direct injection) high pressure pump. In contrast to the conventional model in which a movable member is taken as a mass point with a spring and a damper placed at the impact section, this paper proposes a technique in which a spring-mass model…
Annotation icon
 
new

Cryogenic Cam Butterfly Valve

  • Magazine Article
  • TBMG-34596
Published 2019-06-01 by Tech Briefs Media Group in United States

Typical butterfly valves cannot seal at both ambient and cryogenic temperatures. At cryogenic temperatures, valves grow and shrink, changing critical dimensions such as distance between the disc and seat. Ideally, valves would compensate. The inability of existing butterfly valves to do this led to the design of the Cryogenic Cam Butterfly Valve (CCBV) in which the disc rides on a cam shaft and is held rigid by a torsion spring that provides both axial movement of the disc in addition to the standard 90-degree rotation of a standard butterfly valve. Because the valve’s disc can rotate and translate, it can hold a tighter seal, preventing leakage despite dimensional changes caused by changing operating temperatures.

 

Prediction and Control of Response Time of the Semitrailer Air Braking System

SAE International Journal of Commercial Vehicles

Jiangsu University, China-Ren He, Chang Xu
  • Journal Article
  • 02-12-02-0011
Published 2019-05-09 by SAE International in United States
The response time of the air braking system is the main parameter affecting the longitudinal braking distance of vehicles. In this article, in order to predict and control the response time of the braking system of semitrailers, an AMESim model of the semitrailer braking system involving the relay emergency valve (REV) and chambers was established on the basis of analyzing systematically the working characteristics of the braking system in different braking stages: feedback braking, relay braking, and emergency braking. A semitrailer braking test bench including the brake test circuit and data acquisition system was built to verify the model with typical maneuver. For further evaluating the semitrailer braking response time, an experiment under different control pressures was carried out. Experimental results revealed the necessity of controlling the response time. As a result, a braking pressure compensation system was designed through adding intake and exhaust solenoid valves to the original braking system. A proportional-integral-derivative (PID) control strategy optimized by genetic algorithm (GA) was adopted to generate pulse width modulation (PWM) signals applied to the solenoid valves…
Datasets icon
Annotation icon