Your Selections

Show Only


File Formats

Content Types











Noise and vibration simulations method for electric hybrid tractor powertrain.

Tafe Motors and Tractors Limited-Ishwinder Pal Singh Sethi, Anand Shivajirao Patil
  • Technical Paper
  • 2019-28-2469
To be published on 2019-11-21 by SAE International in United States
Internal combustion (IC) engines have been serving as prime source of power in tractors, since late 19th Century. Over this period, there have been significant improvements in IC engine technology leading to increased power density, reduction in tailpipe emissions and refinement in powertrain noise of tractors. As the regulations governing tailpipe emissions continue to be more stringent, original equipment manufacturers also have initiated work on innovative approaches such as diesel-electric hybrid powertrains to ensure compliance with new norms. However, introduction of such technologies may impact customer’s auditory, vibratory and drivability perceptions. Absence of conventional IC engine noise, association of electric whistle and whine, torque changes with activation/de-activation of motors and transmission behavior under transient conditions may result in new NVH issues in hybrid electric vehicles. The following paper addresses these concerns and introduces a multi-physics simulation model to investigate and mitigate these effects. The multi physics simulation model presented in this paper incorporates the multi-disciplinary domain of internal combustion engine thermodynamics, electric components, mechanical systems, control systems and the vehicle response.

Design optimization for Engine mount

Prateek Sharma
VE Commercial Vehicles Ltd-Mahendra Parwal
  • Technical Paper
  • 2019-28-2540
To be published on 2019-11-21 by SAE International in United States
The mounting of an engine plays important role in controlling the vibration transmissibility, alignment of transmission unit within specific limit. Design of any mounting system mainly depends on stiffness, allowed deformation and transmissibility of force, natural frequency and size w.r.t space constraints etc. This paper helps to study the behavior of engine mount with different layer of rubber with defer stiffness. Firstly the design of front engine mount with single rubber layer according to space constraint in vehicle and then analysis is done to determine the deformation and various results using CAE technique. As per the results, design is modified with varying layer of rubber pad and again analysis is done with same boundary condition followed by improved results.


  • Technical Paper
  • 2019-28-2521
To be published on 2019-11-21 by SAE International in United States
Abstract:At present there are a few types of transmission system available in automated industry, there might some variation in transmission system but the basic working and principle is still the same. Many big automotive manufacturers use different technologies in their transmission system but they still use the same basic principle in their transmission systems. This new technology which is brought by Koenigsegg has changed the way people think about transmission system. This new transmission system is known as Koenigsegg Direct Drive and is currently used by one automotive manufacturer and in one vehicle only, but it soon might change the way it is now.

Future hybrid Vehicles with advanced 48V electrified drive train technology to reduce Co2 emission

Mercedes-Benz R&D India Pvt Ltd-Chandrakant Palve, Pushkaraj Tilak
  • Technical Paper
  • 2019-28-2487
To be published on 2019-11-21 by SAE International in United States
Future hybrid vehicles with advanced 48V electrified drive train technology to reduce CO2 emission. Chandrakant Palve* Pushkaraj Tilak * * Mercedes-Benz Research & Development India Pvt. Ltd. Bangalore. India. Key Words: 48V, CO2, P3 Hybrid, Electrified powertrain, AMT, emission, shift comfort, motor Research and/or Engineering Questions/Objective Global automotive industry is putting effort in moving from conventional powertrain technology to hybrid & electric powertrains. This efforts plays a vital role to achieve cleaner environment, improved performance, reduced fossil-fuel dependency, low noise for meeting regulatory & customer requirements. Automotive industry is facing a challenge of meeting stringent CO2 emission targets of 95g & 175g per kilometer for passenger cars & light commercial vehicles respectively. 48V is an important stepping stone in this direction. By taking motivation from this strategic challenge, advanced 48V P3 electrified powertrain technology has been proposed. The objective of this research is a novel electrified powertrain which offers Dual Clutch Transmission (DCT) level of shift comfort in combine with CO2 benefit without additional cost and weight penalty. Methodology The present study describes a unique…

Investigation of Transmissibility of an all-terrain vehicle with spring and damper tuning.

ARAI Academy-Rajat Girish Kanade, Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2423
To be published on 2019-11-21 by SAE International in United States
The application in ride and handling development has been mostly subjective or intuitive. Suspension settings are based on the opinions of experts. The product of this research will enable to quantify the performance of a suspension in terms of its ability to minimize the transmission of road irregularities to the chassis and achieve good mechanical grip with the road surface. This work presents a dynamical analysis of the transmissibility of an off-road vehicle suspension, developed in VIT Vellore for Baja SAE India competition. A baseline spring rates curve for ride is developed to provide a solid foundation to tune from. The shock absorbers used for testing are Fox Float Evol R air shock absorbers with progressive damping. A thorough data acquisition of the force curves for shocks from a test rig is done. A detailed characteristic of the air shocks is obtained at various loading conditions. The basic damping curve is modified towards the desired ideal nature with the data obtained. The speculated optimum setting is validated on the ATV vehicle with ultrasonic sensors and…

Equivalent Radiated Power driven optimization for driveline housings using simulation tools to cut-down the project time

VE Commercial Vehicles Ltd-Suresh Kumar Kandreegula, Hemant Nishad, Dheeraj Singh, Kunal Kamal
  • Technical Paper
  • 2019-28-2533
To be published on 2019-11-21 by SAE International in United States
In the field of Automotive industry, being competitive makes you succeed. Industry is moving towards advancement day by day. New technologies to improve fuel efficiency, crash resistance, vehicle noise levels have been trending. At VECV, we have traditionally worked on CAE of driveline housings (clutch housing & transmission housing) based on static, dynamic and transient loadings. Currently, weight optimization technique depends on the structural and dynamic loading conditions, but do not consider acoustic concerns. Powertrain housings are highly prone to vibrations and leads to high level of noise. Noise has been constant issue in the casting components associated to driveline. There have been lot of research going on to reduce the level of noise and vibrations in the vehicle driveline, which ultimately leads to fuel efficiency and ergonomic benefits. Low noise generation can also lead to saving of lot of resources deployed to dampen the noises. In order to capture the acoustic responses of the system and to improve the design based on acoustic responses, a comprehensive analysis of newly developed driveline housings (clutch housing…

Miniaturized and sleek protective device

Mahindra & Mahindra, Ltd.-Priyanka Marudhavanan
  • Technical Paper
  • 2019-28-2535
To be published on 2019-11-21 by SAE International in United States
A miniaturized and sleek protective device M. Priyanka, Mahindra&Mahindra, India D. Boobala Krishnan*, Mahindra&Mahindra, India T.Vijayan, Mahindra& Mahindra, India Keywords-Fuse, Lightweight. Research and/or Engineering Questions/Objective: Now-a-days there is lot of advancement coming in automobiles. Earlier the electronics were used in engine and engine compartment areas. Now all hydraulics and transmission have been operated by electronics. The role of electronics like sensors, actuators increasing day by day for lifting and moving operations. With increase in electronics circuit, there is complex in wiring harness and packaging space for fuse box is premium Limitations: Limitations of placing other devices. Occupy more space and weight in the vehicle. Packing constraint due to vibration and thermal management issues. Methodology: Two different fuse of same rating can be given in one fuse and we can reduce the wire size. By this method we can save many fuses and reduce the fuse box size. An optimized fuse box minimizes the length of circuit. It translates the system into less plastics. This type of system is highly useful in systems such as ECU…

Design and Analysis of Hydrostatic Transmission (HST) system for OFF-Highway vehicle

ARAI-Rakesh Vilasrao Mulik, Ramdasi Sushil S, Neelkanth V Marathe
RIT-Siddhant JADHAV, Sanjaykumar Gawade PhD
  • Technical Paper
  • 2019-28-2453
To be published on 2019-11-21 by SAE International in United States
The development of any country depends on capital energy consumption. Due to technological advancements, people want more comfort and performance with the tractors and at the same time less fatigue and reduced fuel consumption. At present, most of the tractors uses conventional Manual Transmission (MT) as main driveline, though there is research going on, with implementation in few cases, for shifting from conventional MT to advanced transmissions. A Continuously Variable Transmission (CVT) provides Step Lesley an infinite number of effective gear ratios between maximum to minimum value. Hydrostatic Transmission (HST) is one of the types of CVT. HST can improve the fuel efficiency and smooth drivability than a MT without compromising vehicle performance. The development of HST in tractor is less costly as several existing components such as clutch, large number of gears in transmission system can be removed along with reducing of driver fatigue. HST has the ability to adjust engine speed at the point of maximum fuel efficiency for given speed and power requirement. HST includes the combination of at least one hydrostatic…

Damage matching criterion for development of accelerated duty cycle from road load data, and achieving right duty cycle to determine gear and bearing durability.

Romax Solutions-Amol Korde
  • Technical Paper
  • 2019-28-0121
To be published on 2019-10-11 by SAE International in United States
While designing the transmission, designer needs to have a duty cycle which is a set of load cases against which he wants to confirm the durability of the same. This is done through data acquisition by running a vehicle on various terrains and converting those data points to a concise set of load cases which we term as duty cycle. This is required because data acquired has millions of data points giving value of torque and RPM at every millisecond which cannot be directly used to assess the fatigue durability of gears and bearings. Converting these millions of road load data points into fewer number of load cases is always a challenge. For a transmission designer, it is being a major hurdle to determine as what is the scientific way of converting these millions of data points into a concise duty cycle. The road load data is taken for few hundred or few thousand kilometres covering enough types of terrains on which vehicle is expected to run. But the methods available with todays engineers does…

Fuel efficiency improvement in automatic Transmissions by Lock-up clutch slip control methodology.

Mahindra & Mahindra, Ltd.-Arun Sukumar
  • Technical Paper
  • 2019-28-0029
To be published on 2019-10-11 by SAE International in United States
Introduction :- Nowdays, Automatic transmissions (AT) have taken over more in the automotive market. Because of traffic, frequently clutch pedal pressing and shift lever operation becomes annoyance in manual transmission.Automatic Transmissions (AT) has better driving comfort, simple operation, but a lower transmission efficiency, higher fuel consumption, can't be competed with manual transmissions. Fuel economy of Automatic Transmissions is poor especially in city drive (Because of driving @ low engine speeds where Torque Converter(TC) is opened). Objective :- The objective of this paper is to present a methodology for torque converter clutches (TCC) to enable clutch slip control at low engine speeds in torque converter without adversely affecting noise and vibration (N&V) performance and increasing fuel economy. The effect of gear state, torque converter slip and power delivered to the driveline on fuel economy are to be discussed. Lock-Up Slip Schedule Determination:- A reasonable slip control area is choosen for achieving increase in transmission efficiency, fuel economy and isolation of torsional vibration. 1. Running in first gear, the torque converter clutch must be unlocked to obtain…