Your Selections

Tools and equipment
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Automation of Sorting and Kitting from cutting tables

Broetje-Automation GmbH-Erik Berg
  • Technical Paper
  • 2019-01-1899
To be published on 2019-09-16 by SAE International in United States
Within the current part production of carbon fiber parts a lot of manual work is included for sorting and kitting of automatic cut plies. This is required due to the high raw material costs and enables a good utilization of the materials. Automation of this non-value adding process will be a big benefit for the part production. The high variety of shapes and the different materials to be processed are complex boundary conditions, which are to be overcome. Broetje is in development of handling systems and automation solutions, which are used for a high variety of materials as well as for a high variety of shapes. These systems are meant to be an add-on for existing cutting tables as well as for fully integrated production systems with downstream automation equipment like draping hoods. Mayor challenges to overcome are safe gripping capabilities, detection of #non-cut fibers, high variety of shapes, complex logistic management. These challenges are addressed with Broetje’s ASK Solution. This paper will focus on the innovative automated sorting and kitting solution invented by Broetje-Automation.
 

Identifying Virtuous Cycles of Using Real-Time Process Data in Portable Semi-Automated Electric Drilling

Airbus Operations GmbH-Jan Sturhmann
Airbus UK-Luke bagshaw, Philip Edwards
  • Technical Paper
  • 2019-01-1875
To be published on 2019-09-16 by SAE International in United States
Purpose: Thanks to the long lifetimes of aerospace platforms, manufacturers face opportunities for improving the manufacturing processes of legacy products. However, the potential benefits of process innovations must be carefully balanced with the costs. One such opportunity is offered through portable semi-automated electric drilling. The purpose of this paper is to identify critical elements in building a business case for incorporating portable semi-automated electric drills on aerospace products and processes. Design/methodology/approach: Drawing on institutional knowledge, we distinguish three entities in hole-generation tasks: hole types, hole-cutting tools, and hole-cutting assets (e.g. portable drills). We identify the specific needs, requirements and constraints in hole generation by focusing on each entity and the relationships between them. We then examine the implications of introducing sensor-equipped portable electric drills that allow real-time process data collection. Finally, we assess the impact of innovation in hole-cutting assets in general. Findings: It was found that the benefits of real-time process data collection can lead into a virtuous cycle where a first-order benefit can lead to multiple higher-order benefits. For example, provision of spindle…
 

Line Side Equipment

Broetje-Automation Gmbh-Bertrand LAPORTE
  • Technical Paper
  • 2019-01-1879
To be published on 2019-09-16 by SAE International in United States
The aircraft production rate is now increasing and requires to keep the production tools as close as possible from the assembly work area. As production sites cannot be extended as much as the rate increases, this has created the need for developing innovative & efficient line side equipment, which fulfils storage capacity, ergonomical accessibility, easy handling & quick load unload performance for all aircraft part assemblies. This paper will focus on the development and the integration into the production on our innovative solutions on Line Side Equipment . The Line Side Equipment is custom designed and built for manual or semi-automated assembly lines. It offers a wide range of solutions such as dedicated storage areas, trolleys, easy acces, tool kits & smart cabinets.
 

Analytical Model for Calibration Results performances enhancement, resulting in automated prescription for equipments

AIRBUS-Juan Manuel García Lasanta
Airbus-Damian MENDEZ-HUELVA
  • Technical Paper
  • 2019-01-1878
To be published on 2019-09-16 by SAE International in United States
The current aeronautical manufacturing sector is characterized by the high level of competence and the required requirement in its production processes, based on the objectives of profitability and safety (airworthiness). In recent years, there is a real revolution in the sector, where the most advanced tools for the organization and optimization of production are given priority, supported by the latest massively used techniques of automatic data collection. , their organized storage and their analytical classification. Metrology plays a key role in ensuring the quality and reliability of the information generated in these productive cycles. The provision of an analytical model of flexible measurement systems, capable and easily adaptable to the dynamics of the company, is presented as one of the pillars in which this new conception of production is based. The provision of an analytical model of flexible measurement systems, capable and easily adaptable to the dynamics of the company, is presented as one of the pillars in which this new conception of production is based. At the Airbus plant in Puerto Real, and in…
 

C919 Trailing Edge Assembly Interchangeable Tooling

Electroimpact-James Dineley
  • Technical Paper
  • 2019-01-1880
To be published on 2019-09-16 by SAE International in United States
Traditional Trailing Edge (TE) assembly that utilise fixtures for accurate positioning of aircraft (a/c) parts do not allow for removal of specific tooling from the fixtures to travel with the TE, post assembly. Instead, the tooling that positions all the primary a/c assembly datums generally utilise precision pins of various sizes that index and clamp the a/c ribs. Often it is difficult to remove the pins post assembly before the spar can be taken out of the fixture. Use of hammers is common place to hit pins out of holes which is less than ideal considering the a/c parts can be fragile and the tooling is precision set. Also, the Main Assembly Fixture (MAJ) that will receive the TE will inevitably need to relocate some if not all the primary a/c ribs and therefore will most likely be subject to some amount of persuasion. Electroimpact have for many years used cup cone locators that allows static tooling to be temporarily ‘loosened’ and therefore made more compliant for pin insertion/removal, this has been successful to reduce…
 

An embedded simulation approach for tolerance analysis on vehicle propulsion subsystem

GM Global Propulsion Systems-Claudio Mancuso, Domenico Cavaiuolo, Giuseppe Corbo
Gamma Technologies LLC-Iakovos Papadimitriou
  • Technical Paper
  • 2019-24-0079
To be published on 2019-08-15 by SAE International in United States
An increasing demand for reducing cost and time effort of the design process via improved CAE (Computer-Aided Engineer) tools and methods has characterized the automotive industry over the past two decades. One of the main challenge regarded the effective simulation of a vehicle’s propulsion system dealing with different physical domains: several examples have been proposed in literature mainly based on co-simulation approach which involves a specific tool for each propulsion system part modeling. Nevertheless, these solutions are not fully suitable and effective to perform statistical analysis including all physical parameters. In this respect, this paper presents the definition and implementation of a new simulation methodology applied to a propulsion subsystem. The reported approach is based on the usage of Synopsis Saber as dominant tool for co-simulation: models of electronic circuitry, electro-mechanical components and control algorithm are implemented in Saber to perform tolerance analysis; in addition, a dynamic link with engine plant model developed in GT-Suite environment has been established via a dedicated procedure. Moreover, a HPC Grid (High Performance Computing Grid) is used with the…
 
new

INSTALLING AND REMOVAL TOOLS, CONNECTOR ELECTRICAL CONTACT, TYPE I, CLASS 1, COMPOSITION A

AE-8C2 Terminating Devices and Tooling Committee
  • Aerospace Standard
  • AS81969/33
  • Current
Published 2019-06-14 by SAE International in United States
No Abstract Available.
Annotation icon
 
new

INSTALLING AND REMOVAL TOOLS, CONNECTOR ELECTRICAL CONTACT, TYPE II, CLASS 1, COMPOSITION A (FOR MIL-DTL-28840 CONNECTORS)

AE-8C2 Terminating Devices and Tooling Committee
  • Aerospace Standard
  • AS81969/34
  • Current
Published 2019-06-14 by SAE International in United States
No Abstract Available.
Annotation icon
 
new

Type IV Anti-Icing Fluid Subjected to Light Freezing Rain: Visual and Thermal Analysis

UQAC - AMIL-Jean-Denis Brassard, Caroline Laforte, Christophe Volat
Published 2019-06-10 by SAE International in United States
Deicing the aircraft using fluid, prior takeoff is mandatory; since a thin layer of ice or snow can compromise the safety. With the same idea, to use anti-icing fluid during a frozen precipitation to protect the aircraft is also essential. Commercialized anti-icing fluids all pass the process of qualification as described in the SAE documents. One of these documents specifies a set of tests that reproduce freezing precipitation to obtain endurance time and then the holdover timetables. The endurance time is determined by visual inspection: when 30% of the plate is covered with frozen contaminants. With the evolution of technology and the venue of new tools, it may simplify the process, and at least confirm the observations. This paper proposed a thermal and visual analysis of the behavior of a Type IV fluid subjected to light freezing rain. During the precipitation, the plate temperature is measured with thermocouples and recorded using a visual camera and an IR camera. The use the visual camera in conjunction with the IR camera allowed to understand how the water…
Annotation icon
 
new

Experimental and Computer Model Results for a Carbon Nanotubes Electrothermal De-Icing System

Embraer-Rodrigo Domingos, Gilberto Becker
Published 2019-06-10 by SAE International in United States
Results from a three-dimensional computer model of a Carbon Nanotubes (CNT) based de-icing system are compared to experimental data obtained at COLLINS-Ohio Icing Wind Tunnel (IWT). The experiments were performed using a prototype of a CNT based de-icing system installed in a section of a business jet horizontal tail. The 3D numerical analysis tools used in the comparisons are AIPAC [1] and CFD++. The former was derived from HASPAC, an anti-icing computer model developed at Wichita State University in 2010 [3, 9, 10]. AIPAC uses the finite volumes method for the solution of the icing problem on an airfoil leading edge (or other 3D surfaces) and relies on any CFD solver to obtain the external flow properties used as boundary conditions. AIPAC is capable of predicting 3D multi-step ice shapes under rime, glaze and mixed regimes, and can also deal with the complex dynamics of cyclic ice accretion, melting, and shedding present in the realm of aircraft electrothermal de-icing systems. The latter is the CFD solver selected to provide the external flow properties for the…
Datasets icon
Annotation icon